-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathtrain.py
235 lines (204 loc) · 9.77 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
import argparse
import math
import h5py
import numpy as np
import tensorflow as tf
import socket
import os
import sys
BASE_DIR = os.path.dirname(os.path.abspath(__file__))
ROOT_DIR = os.path.dirname(os.path.dirname(BASE_DIR))
import provider
from utils import tf_util
from model import *
parser = argparse.ArgumentParser()
parser.add_argument('--gpu', type=int, default=0, help='GPU to use [default: GPU 0]')
parser.add_argument('--log_dir', default='log', help='Log dir [default: log]')
parser.add_argument('--num_point', type=int, default=4096, help='Point number [default: 4096]')
parser.add_argument('--max_epoch', type=int, default=100, help='Epoch to run [default: 100]')
parser.add_argument('--batch_size', type=int, default=12, help='Batch Size during training [default: 12]')
parser.add_argument('--learning_rate', type=float, default=0.001, help='Initial learning rate [default: 0.001]')
parser.add_argument('--momentum', type=float, default=0.9, help='Initial learning rate [default: 0.9]')
parser.add_argument('--optimizer', default='adam', help='adam or momentum [default: adam]')
parser.add_argument('--decay_step', type=int, default=300000, help='Decay step for lr decay [default: 300000]')
parser.add_argument('--decay_rate', type=float, default=0.5, help='Decay rate for lr decay [default: 0.5]')
parser.add_argument('--input_list', type=str, default='data/train_hdf5_file_list_woArea5.txt',
help='Input data list file')
parser.add_argument('--restore_model', type=str, default='None', help='Pretrained model')
FLAGS = parser.parse_args()
BATCH_SIZE = FLAGS.batch_size
NUM_POINT = FLAGS.num_point
MAX_EPOCH = FLAGS.max_epoch
BASE_LEARNING_RATE = FLAGS.learning_rate
GPU_INDEX = FLAGS.gpu
MOMENTUM = FLAGS.momentum
OPTIMIZER = FLAGS.optimizer
DECAY_STEP = FLAGS.decay_step
DECAY_RATE = FLAGS.decay_rate
TRAINING_FILE_LIST = FLAGS.input_list
PRETRAINED_MODEL_PATH = FLAGS.restore_model
LOG_DIR = FLAGS.log_dir
if not os.path.exists(LOG_DIR): os.mkdir(LOG_DIR)
# os.system('cp model.py %s' % (LOG_DIR)) # bkp of model def
# os.system('cp train.py %s' % (LOG_DIR)) # bkp of train procedure
LOG_FOUT = open(os.path.join(LOG_DIR, 'log_train.txt'), 'w')
LOG_FOUT.write(str(FLAGS) + '\n')
MAX_NUM_POINT = 4096
NUM_CLASSES = 13
BN_INIT_DECAY = 0.5
BN_DECAY_DECAY_RATE = 0.5
# BN_DECAY_DECAY_STEP = float(DECAY_STEP * 2)
BN_DECAY_DECAY_STEP = float(DECAY_STEP)
BN_DECAY_CLIP = 0.99
HOSTNAME = socket.gethostname()
# Load ALL data
train_file_list = provider.getDataFiles(TRAINING_FILE_LIST)
train_data = []
train_group = []
train_sem = []
for h5_filename in train_file_list:
cur_data, cur_group, _, cur_sem = provider.loadDataFile_with_groupseglabel_stanfordindoor(h5_filename)
train_data.append(cur_data)
train_group.append(cur_group)
train_sem.append(cur_sem)
train_data = np.concatenate(train_data, axis=0)
train_group = np.concatenate(train_group, axis=0)
train_sem = np.concatenate(train_sem, axis=0)
def log_string(out_str):
LOG_FOUT.write(out_str + '\n')
LOG_FOUT.flush()
print(out_str)
def get_learning_rate(batch):
learning_rate = tf.train.exponential_decay(
BASE_LEARNING_RATE, # Base learning rate.
batch * BATCH_SIZE, # Current index into the dataset.
DECAY_STEP, # Decay step.
DECAY_RATE, # Decay rate.
staircase=True)
learning_rate = tf.maximum(learning_rate, 0.00001) # CLIP THE LEARNING RATE!!
return learning_rate
def get_bn_decay(batch):
bn_momentum = tf.train.exponential_decay(
BN_INIT_DECAY,
batch * BATCH_SIZE,
BN_DECAY_DECAY_STEP,
BN_DECAY_DECAY_RATE,
staircase=True)
bn_decay = tf.minimum(BN_DECAY_CLIP, 1 - bn_momentum)
return bn_decay
def get_trainable_variables():
# trainables = [var for var in tf.trainable_variables() if 'bias' not in var.name]# and \
trainables = tf.trainable_variables()
print("All {} trainable variables, {} variables to train".format(len(tf.trainable_variables()), len(trainables)))
return trainables
def train():
with tf.Graph().as_default():
with tf.device('/gpu:' + str(GPU_INDEX)):
pointclouds_pl, labels_pl, sem_labels_pl = placeholder_inputs(BATCH_SIZE, NUM_POINT)
is_training_pl = tf.placeholder(tf.bool, shape=())
# Note the global_step=batch parameter to minimize.
# That tells the optimizer to helpfully increment the 'batch' parameter for you every time it trains.
batch = tf.Variable(0)
bn_decay = get_bn_decay(batch)
tf.summary.scalar('bn_decay', bn_decay)
# Get model and loss
pred_sem, pred_ins = get_model(pointclouds_pl, is_training_pl, NUM_CLASSES, bn_decay=bn_decay)
pred_sem_softmax = tf.nn.softmax(pred_sem)
pred_sem_label = tf.argmax(pred_sem_softmax, axis=2)
loss, sem_loss, disc_loss, l_var, l_dist, l_reg = get_loss(pred_ins, labels_pl, pred_sem_label, pred_sem,
sem_labels_pl)
tf.summary.scalar('loss', loss)
tf.summary.scalar('sem_loss', sem_loss)
tf.summary.scalar('disc_loss', disc_loss)
tf.summary.scalar('l_var', l_var)
tf.summary.scalar('l_dist', l_dist)
tf.summary.scalar('l_reg', l_reg)
trainables = get_trainable_variables()
# Get training operator
learning_rate = get_learning_rate(batch)
tf.summary.scalar('learning_rate', learning_rate)
if OPTIMIZER == 'momentum':
optimizer = tf.train.MomentumOptimizer(learning_rate, momentum=MOMENTUM)
elif OPTIMIZER == 'adam':
optimizer = tf.train.AdamOptimizer(learning_rate)
train_op = optimizer.minimize(loss, var_list=trainables, global_step=batch)
load_var_list = [v for v in tf.all_variables() if ('sem_' not in v.name)]
loader = tf.train.Saver(load_var_list, sharded=True)
# Add ops to save and restore all the variables.
saver = tf.train.Saver()
# Create a session
config = tf.ConfigProto()
config.gpu_options.allow_growth = True
config.allow_soft_placement = True
config.log_device_placement = True
sess = tf.Session(config=config)
# Add summary writers
merged = tf.summary.merge_all()
train_writer = tf.summary.FileWriter(os.path.join(LOG_DIR, 'train'),
sess.graph)
test_writer = tf.summary.FileWriter(os.path.join(LOG_DIR, 'test'))
# Init variables
init = tf.global_variables_initializer()
sess.run(init, {is_training_pl: True})
ckptstate = tf.train.get_checkpoint_state(PRETRAINED_MODEL_PATH)
if ckptstate is not None:
LOAD_MODEL_FILE = os.path.join(PRETRAINED_MODEL_PATH, os.path.basename(ckptstate.model_checkpoint_path))
loader.restore(sess, LOAD_MODEL_FILE)
log_string("Model loaded in file: %s" % LOAD_MODEL_FILE)
else:
log_string("Fail to load modelfile: %s" % PRETRAINED_MODEL_PATH)
adam_initializers = [var.initializer for var in tf.global_variables() if 'Adam' in var.name]
sess.run(adam_initializers)
ops = {'pointclouds_pl': pointclouds_pl,
'labels_pl': labels_pl,
'sem_labels_pl': sem_labels_pl,
'is_training_pl': is_training_pl,
'loss': loss,
'sem_loss': sem_loss,
'disc_loss': disc_loss,
'l_var': l_var,
'l_dist': l_dist,
'l_reg': l_reg,
'train_op': train_op,
'merged': merged,
'step': batch}
for epoch in range(MAX_EPOCH):
log_string('**** EPOCH %03d ****' % (epoch))
sys.stdout.flush()
train_one_epoch(sess, ops, train_writer)
# Save the variables to disk.
if epoch % 10 == 0 or epoch == (MAX_EPOCH - 1):
save_path = saver.save(sess, os.path.join(LOG_DIR, 'epoch_' + str(epoch) + '.ckpt'))
log_string("Model saved in file: %s" % save_path)
def train_one_epoch(sess, ops, train_writer):
""" ops: dict mapping from string to tf ops """
is_training = True
log_string('----')
current_data, current_label, shuffled_idx = provider.shuffle_data(train_data[:, 0:NUM_POINT, :], train_group)
current_sem = train_sem[shuffled_idx]
file_size = current_data.shape[0]
num_batches = file_size // BATCH_SIZE
loss_sum = 0
for batch_idx in range(num_batches):
if batch_idx % 100 == 0:
print('Current batch/total batch num: %d/%d' % (batch_idx, num_batches))
start_idx = batch_idx * BATCH_SIZE
end_idx = (batch_idx + 1) * BATCH_SIZE
feed_dict = {ops['pointclouds_pl']: current_data[start_idx:end_idx, :, :],
ops['labels_pl']: current_label[start_idx:end_idx],
ops['sem_labels_pl']: current_sem[start_idx:end_idx],
ops['is_training_pl']: is_training, }
summary, step, _, loss_val, sem_loss_val, disc_loss_val, l_var_val, l_dist_val, l_reg_val = sess.run(
[ops['merged'], ops['step'], ops['train_op'], ops['loss'], ops['sem_loss'], ops['disc_loss'], ops['l_var'],
ops['l_dist'], ops['l_reg']],
feed_dict=feed_dict)
train_writer.add_summary(summary, step)
loss_sum += loss_val
if batch_idx % 50 == 0:
log_string(
"loss: {:.2f}; sem_loss: {:.2f}; disc_loss: {:.2f}; l_var: {:.2f}; l_dist: {:.2f}; l_reg: {:.3f}.".format(
loss_val, sem_loss_val, disc_loss_val, l_var_val, l_dist_val, l_reg_val))
log_string('mean loss: %f' % (loss_sum / float(num_batches)))
if __name__ == "__main__":
train()
LOG_FOUT.close()