-
Notifications
You must be signed in to change notification settings - Fork 1
/
pawns.cpp
238 lines (182 loc) · 7.78 KB
/
pawns.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
/*
Stockfish, a UCI chess playing engine derived from Glaurung 2.1
Copyright (C) 2004-2008 Tord Romstad (Glaurung author)
Copyright (C) 2008-2010 Marco Costalba, Joona Kiiski, Tord Romstad
Stockfish is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
Stockfish is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
////
//// Includes
////
#include <cassert>
#include <cstring>
#include "bitcount.h"
#include "pawns.h"
#include "position.h"
////
//// Local definitions
////
namespace {
/// Constants and variables
#define S(mg, eg) make_score(mg, eg)
// Doubled pawn penalty by opposed flag and file
const Score DoubledPawnPenalty[2][8] = {
{ S(13, 43), S(20, 48), S(23, 48), S(23, 48),
S(23, 48), S(23, 48), S(20, 48), S(13, 43) },
{ S(13, 43), S(20, 48), S(23, 48), S(23, 48),
S(23, 48), S(23, 48), S(20, 48), S(13, 43) }};
// Isolated pawn penalty by opposed flag and file
const Score IsolatedPawnPenalty[2][8] = {
{ S(37, 45), S(54, 52), S(60, 52), S(60, 52),
S(60, 52), S(60, 52), S(54, 52), S(37, 45) },
{ S(25, 30), S(36, 35), S(40, 35), S(40, 35),
S(40, 35), S(40, 35), S(36, 35), S(25, 30) }};
// Backward pawn penalty by opposed flag and file
const Score BackwardPawnPenalty[2][8] = {
{ S(30, 42), S(43, 46), S(49, 46), S(49, 46),
S(49, 46), S(49, 46), S(43, 46), S(30, 42) },
{ S(20, 28), S(29, 31), S(33, 31), S(33, 31),
S(33, 31), S(33, 31), S(29, 31), S(20, 28) }};
// Pawn chain membership bonus by file
const Score ChainBonus[8] = {
S(11,-1), S(13,-1), S(13,-1), S(14,-1),
S(14,-1), S(13,-1), S(13,-1), S(11,-1)
};
// Candidate passed pawn bonus by rank
const Score CandidateBonus[8] = {
S( 0, 0), S( 6, 13), S(6,13), S(14,29),
S(34,68), S(83,166), S(0, 0), S( 0, 0)
};
#undef S
}
////
//// Functions
////
/// PawnInfoTable c'tor and d'tor instantiated one each thread
PawnInfoTable::PawnInfoTable() {
entries = new PawnInfo[PawnTableSize];
if (!entries)
{
std::cerr << "Failed to allocate " << (PawnTableSize * sizeof(PawnInfo))
<< " bytes for pawn hash table." << std::endl;
exit(EXIT_FAILURE);
}
memset(entries, 0, PawnTableSize * sizeof(PawnInfo));
}
PawnInfoTable::~PawnInfoTable() {
delete [] entries;
}
/// PawnInfoTable::get_pawn_info() takes a position object as input, computes
/// a PawnInfo object, and returns a pointer to it. The result is also stored
/// in a hash table, so we don't have to recompute everything when the same
/// pawn structure occurs again.
PawnInfo* PawnInfoTable::get_pawn_info(const Position& pos) const {
assert(pos.is_ok());
Key key = pos.get_pawn_key();
unsigned index = unsigned(key & (PawnTableSize - 1));
PawnInfo* pi = entries + index;
// If pi->key matches the position's pawn hash key, it means that we
// have analysed this pawn structure before, and we can simply return
// the information we found the last time instead of recomputing it.
if (pi->key == key)
return pi;
// Clear the PawnInfo object, and set the key
memset(pi, 0, sizeof(PawnInfo));
pi->halfOpenFiles[WHITE] = pi->halfOpenFiles[BLACK] = 0xFF;
pi->kingSquares[WHITE] = pi->kingSquares[BLACK] = SQ_NONE;
pi->key = key;
// Calculate pawn attacks
Bitboard wPawns = pos.pieces(PAWN, WHITE);
Bitboard bPawns = pos.pieces(PAWN, BLACK);
pi->pawnAttacks[WHITE] = ((wPawns << 9) & ~FileABB) | ((wPawns << 7) & ~FileHBB);
pi->pawnAttacks[BLACK] = ((bPawns >> 7) & ~FileABB) | ((bPawns >> 9) & ~FileHBB);
// Evaluate pawns for both colors
pi->value = evaluate_pawns<WHITE>(pos, wPawns, bPawns, pi)
- evaluate_pawns<BLACK>(pos, bPawns, wPawns, pi);
return pi;
}
/// PawnInfoTable::evaluate_pawns() evaluates each pawn of the given color
template<Color Us>
Score PawnInfoTable::evaluate_pawns(const Position& pos, Bitboard ourPawns,
Bitboard theirPawns, PawnInfo* pi) const {
Bitboard b;
Square s;
File f;
Rank r;
bool passed, isolated, doubled, opposed, chain, backward, candidate;
Score value = SCORE_ZERO;
const BitCountType Max15 = CpuIs64Bit ? CNT64_MAX15 : CNT32_MAX15;
const Square* ptr = pos.piece_list_begin(Us, PAWN);
// Loop through all pawns of the current color and score each pawn
while ((s = *ptr++) != SQ_NONE)
{
assert(pos.piece_on(s) == piece_of_color_and_type(Us, PAWN));
f = square_file(s);
r = square_rank(s);
// This file cannot be half open
pi->halfOpenFiles[Us] &= ~(1 << f);
// Our rank plus previous one. Used for chain detection.
b = rank_bb(r) | rank_bb(Us == WHITE ? r - Rank(1) : r + Rank(1));
// Passed, isolated, doubled or member of a pawn
// chain (but not the backward one) ?
passed = !(theirPawns & passed_pawn_mask(Us, s));
doubled = ourPawns & squares_in_front_of(Us, s);
opposed = theirPawns & squares_in_front_of(Us, s);
isolated = !(ourPawns & neighboring_files_bb(f));
chain = ourPawns & neighboring_files_bb(f) & b;
// Test for backward pawn
//
backward = false;
// If the pawn is passed, isolated, or member of a pawn chain
// it cannot be backward. If can capture an enemy pawn or if
// there are friendly pawns behind on neighboring files it cannot
// be backward either.
if ( !(passed | isolated | chain)
&& !(ourPawns & attack_span_mask(opposite_color(Us), s))
&& !(pos.attacks_from<PAWN>(s, Us) & theirPawns))
{
// We now know that there are no friendly pawns beside or behind this
// pawn on neighboring files. We now check whether the pawn is
// backward by looking in the forward direction on the neighboring
// files, and seeing whether we meet a friendly or an enemy pawn first.
b = pos.attacks_from<PAWN>(s, Us);
// Note that we are sure to find something because pawn is not passed
// nor isolated, so loop is potentially infinite, but it isn't.
while (!(b & (ourPawns | theirPawns)))
Us == WHITE ? b <<= 8 : b >>= 8;
// The friendly pawn needs to be at least two ranks closer than the enemy
// pawn in order to help the potentially backward pawn advance.
backward = (b | (Us == WHITE ? b << 8 : b >> 8)) & theirPawns;
}
assert(passed | opposed | (attack_span_mask(Us, s) & theirPawns));
// Test for candidate passed pawn
candidate = !(opposed | passed)
&& (b = attack_span_mask(opposite_color(Us), s + pawn_push(Us)) & ourPawns) != EmptyBoardBB
&& count_1s<Max15>(b) >= count_1s<Max15>(attack_span_mask(Us, s) & theirPawns);
// Mark the pawn as passed. Pawn will be properly scored in evaluation
// because we need full attack info to evaluate passed pawns. Only the
// frontmost passed pawn on each file is considered a true passed pawn.
if (passed && !doubled)
set_bit(&(pi->passedPawns[Us]), s);
// Score this pawn
if (isolated)
value -= IsolatedPawnPenalty[opposed][f];
if (doubled)
value -= DoubledPawnPenalty[opposed][f];
if (backward)
value -= BackwardPawnPenalty[opposed][f];
if (chain)
value += ChainBonus[f];
if (candidate)
value += CandidateBonus[relative_rank(Us, s)];
}
return value;
}