-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathutils.py
234 lines (203 loc) · 7.82 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
import os
import sys
import time
import math
import torch
import torch.nn as nn
import torch.nn.init as init
from datetime import datetime
import shutil, argparse
import numpy as np
import matplotlib.pyplot as plt
from skimage.color import rgb2lab, rgb2gray, lab2rgb
plt.switch_backend('agg')
def get_time_str():
dt = datetime.now()
ts = datetime.timestamp(dt)
# convert to datetime
date_time = datetime.fromtimestamp(ts)
# convert timestamp to string in dd-mm-yyyy HH:MM:SS
str_date_time = date_time.strftime("%d-%m-%Y-%H:%M")
return(str_date_time)
def get_mean_and_std(dataset):
'''Compute the mean and std value of dataset.'''
dataloader = torch.utils.data.DataLoader(dataset, batch_size=1, shuffle=True, num_workers=2)
mean = torch.zeros(3)
std = torch.zeros(3)
print('==> Computing mean and std..')
for inputs, targets in dataloader:
for i in range(3):
mean[i] += inputs[:,i,:,:].mean()
std[i] += inputs[:,i,:,:].std()
mean.div_(len(dataset))
std.div_(len(dataset))
return mean, std
def init_params(net):
'''Init layer parameters.'''
for m in net.modules():
if isinstance(m, nn.Conv2d):
init.kaiming_normal(m.weight, mode='fan_out')
if m.bias:
init.constant(m.bias, 0)
elif isinstance(m, nn.BatchNorm2d):
init.constant(m.weight, 1)
init.constant(m.bias, 0)
elif isinstance(m, nn.Linear):
init.normal(m.weight, std=1e-3)
if m.bias:
init.constant(m.bias, 0)
# _, term_width = os.popen('stty size', 'r').read().split()
# term_width = int(term_width)
term_width = 128
TOTAL_BAR_LENGTH = 65.
last_time = time.time()
begin_time = last_time
def progress_bar(current, total, msg=None):
global last_time, begin_time
if current == 0:
begin_time = time.time() # Reset for new bar.
cur_len = int(TOTAL_BAR_LENGTH*current/total)
rest_len = int(TOTAL_BAR_LENGTH - cur_len) - 1
sys.stdout.write(' [')
for i in range(cur_len):
sys.stdout.write('=')
sys.stdout.write('>')
for i in range(rest_len):
sys.stdout.write('.')
sys.stdout.write(']')
cur_time = time.time()
step_time = cur_time - last_time
last_time = cur_time
tot_time = cur_time - begin_time
L = []
L.append(' Step: %s' % format_time(step_time))
L.append(' | Tot: %s' % format_time(tot_time))
if msg:
L.append(' | ' + msg)
msg = ''.join(L)
sys.stdout.write(msg)
for i in range(term_width-int(TOTAL_BAR_LENGTH)-len(msg)-3):
sys.stdout.write(' ')
# Go back to the center of the bar.
for i in range(term_width-int(TOTAL_BAR_LENGTH/2)+2):
sys.stdout.write('\b')
sys.stdout.write(' %d/%d ' % (current+1, total))
if current < total-1:
sys.stdout.write('\r')
else:
sys.stdout.write('\n')
sys.stdout.flush()
def format_time(seconds):
days = int(seconds / 3600/24)
seconds = seconds - days*3600*24
hours = int(seconds / 3600)
seconds = seconds - hours*3600
minutes = int(seconds / 60)
seconds = seconds - minutes*60
secondsf = int(seconds)
seconds = seconds - secondsf
millis = int(seconds*1000)
f = ''
i = 1
if days > 0:
f += str(days) + 'D'
i += 1
if hours > 0 and i <= 2:
f += str(hours) + 'h'
i += 1
if minutes > 0 and i <= 2:
f += str(minutes) + 'm'
i += 1
if secondsf > 0 and i <= 2:
f += str(secondsf) + 's'
i += 1
if millis > 0 and i <= 2:
f += str(millis) + 'ms'
i += 1
if f == '':
f = '0ms'
return f
def visualize_image(grayscale_input, ab_input=None, show_image=False, save_path=None, save_name=None):
'''Show or save image given grayscale (and ab color) inputs. Input save_path in the form {'grayscale': '/path/', 'colorized': '/path/'}'''
plt.clf() # clear matplotlib plot
ab_input = ab_input.cpu()
grayscale_input = grayscale_input.cpu()
if ab_input is None:
grayscale_input = grayscale_input.squeeze().numpy()
if save_path is not None and save_name is not None:
plt.imsave(grayscale_input, '{}.{}'.format(save_path['grayscale'], save_name) , cmap='gray')
if show_image:
plt.imshow(grayscale_input, cmap='gray')
plt.show()
else:
color_image = torch.cat((grayscale_input, ab_input), 0).numpy()
color_image = color_image.transpose((1, 2, 0))
color_image[:, :, 0:1] = color_image[:, :, 0:1] * 100
color_image[:, :, 1:3] = color_image[:, :, 1:3] * 255 - 128
color_image = lab2rgb(color_image.astype(np.float64))
grayscale_input = grayscale_input.squeeze().numpy()
if save_path is not None and save_name is not None:
plt.imsave(arr=grayscale_input, fname='{}{}'.format(save_path['grayscale'], save_name), cmap='gray')
plt.imsave(arr=color_image, fname='{}{}'.format(save_path['colorized'], save_name))
if show_image:
f, axarr = plt.subplots(1, 2)
axarr[0].imshow(grayscale_input, cmap='gray')
axarr[1].imshow(color_image)
plt.show()
def combine_channels(gray_input, ab_input, lab_version):
'''
Function for combining the grayscale and ab layers into a single Lab image
and converting it back to RGB.
Two Lab versions are allowed:
* 1 - the output of the a/b channels is in the range of [-1,1]
* 2 - the output of the a/b channels is in the range of [0,1]
Parameters
----------
gray_input : torch.tensor
A tensor containing the grayscale image
ab_input : torch.tensor
A tensor containing the corresponding a/b channels of a Lab image
lab_version : int
Version of the Lab formatting used
Returns
-------
gray_output : np.ndarray
The grayscale image
color_output : np.ndarray
The RGB image obtained from the Lab color space
'''
if gray_input.is_cuda: gray_input = gray_input.cpu()
if ab_input.is_cuda: ab_input = ab_input.cpu()
# combine channels
color_image = torch.cat((gray_input, ab_input), 0).numpy()
color_image = color_image.transpose((1, 2, 0)) # rescale for matplotlib
# reverse the transformation from DataLoaders
if lab_version == 1:
color_image = color_image * [100, 128, 128]
elif lab_version == 2:
color_image = color_image * [100, 255, 255] - [0, 128, 128]
else:
raise ValueError('Incorrect Lab version!!!')
# prepare the grayscale/RGB imagers
gray_output = gray_input.squeeze().numpy()
color_output = lab2rgb(color_image.astype(np.float64))
return gray_output, color_output
def save_temp_results(gray_input, ab_input, lab_version, save_path=None, save_name=None):
'''
Show/save rgb image from grayscale and ab channels
Input save_path in the form {'grayscale': '/path/', 'colorized': '/path/'}
'''
plt.clf() # clear matplotlib
gray_output, color_output = combine_channels(gray_input, ab_input, lab_version)
if save_path is not None and save_name is not None:
plt.imsave(arr=gray_output, fname='{}{}'.format(save_path['grayscale'], save_name), cmap='gray')
plt.imsave(arr=color_output, fname='{}{}'.format(save_path['colorized'], save_name))
def save_pred_results(gray_input, ab_input, lab_version, save_path=None, save_name=None):
'''
Show/save rgb image from grayscale and ab channels
Input save_path in the form {'grayscale': '/path/', 'colorized': '/path/'}
'''
plt.clf() # clear matplotlib
gray_output, color_output = combine_channels(gray_input, ab_input, lab_version)
if save_path is not None and save_name is not None:
plt.imsave(arr=color_output, fname='{}{}'.format(save_path['colorized'], save_name))