-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathmainCreateDataset.py
431 lines (372 loc) · 22 KB
/
mainCreateDataset.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
import torch
import nrrd
import sys
from PIL import Image
from torchvision.transforms import ToTensor
from torch.utils import data
from torch.utils.data.sampler import SequentialSampler
from torch.utils.tensorboard import SummaryWriter
from torch.cuda.amp import autocast
import torchvision as tv
import torch.nn as nn
import matplotlib.pyplot as plt
import subprocess
import glob, os
import numpy as np
from datetime import datetime
import argparse
import zipfile
from shutil import copyfile
from tifffile import imsave
import utils.pytorch_shot_noise as pytorch_shot_noise
from utils.XLFMDataset import XLFMDatasetFull
from utils.misc_utils import *
from utils.XLFMDeconv import *
from nets.SLNet import *
# Arguments
parser = argparse.ArgumentParser()
parser.add_argument('--data_folder', nargs='?', default="", help='Input images path in format /XLFM_image/XLFM_image_stack.tif and XLFM_image_stack_S.tif in case of a sparse GT stack.')
parser.add_argument('--volume_raw_reference_path', nargs='?', default= '*tif', help='For augmentation the volumes must be computed, perhaps this volumes where arleady computed?. use: path + *tif')
parser.add_argument('--volume_sparse_reference_path', nargs='?', default= '*tif', help='For augmentation the volumes must be computed, perhaps this volumes where arleady computed?.')
parser.add_argument('--lenslet_file', nargs='?', default= "lenslet_centers_python.txt")
parser.add_argument('--files_to_store', nargs='+', default=[], help='Relative paths of files to store in a zip when running this script, for backup.')
parser.add_argument('--prefix', nargs='?', default= "fishy", help='Prefix string for the output folder.')
parser.add_argument('--checkpoint', nargs='?', default= "", help='File path of checkpoint of SLNet.')
parser.add_argument('--psf_file', nargs='?', default= "PSF_2.5um_processed.mat", help='.mat matlab file with PSF stack, used for deconvolution.')
# Images related arguments
parser.add_argument('--images_to_use', nargs='+', type=int, default=list(range(0,193,1)), help='Indeces of images to train on.')
parser.add_argument('--n_simulations', type=int, default=50, help='Number of samples to generate.')
# Noise arguments
parser.add_argument('--add_noise', type=int, default=0, help='Apply noise to images? 0 or 1')
parser.add_argument('--signal_power_max', type=float, default=30**2, help='Max signal value to control signal to noise ratio when applyting noise.')
parser.add_argument('--signal_power_min', type=float, default=60**2, help='Min signal value to control signal to noise ratio when applyting noise.')
parser.add_argument('--dark_current', type=float, default=106, help='Dark current value of camera.')
parser.add_argument('--dark_current_sparse', type=float, default=0, help='Dark current value of camera.')
# z Roll augmentation
parser.add_argument('--max_z_roll_augm', type=int, default=80, help='Max roll posible for random roll')
# Sparse decomposition arguments
parser.add_argument('--temporal_shifts', nargs='+', type=int, default=[0,49,99], help='Which frames to use for training and testing.')
parser.add_argument('--SD_iterations', type=int, default=0, help='Number of iterations for Sparse Decomposition, 0 to disable.')
parser.add_argument('--frame_to_grab', type=int, default=0, help='Which frame to show from the sparse decomposition?')
# 3D deconvolution arguments
parser.add_argument('--deconv_iterations', type=int, default=50, help='Number of iterations for 3D deconvolution, for GT volume generation.')
parser.add_argument('--deconv_n_depths', type=int, default=120, help='Number of depths to create in 3D deconvolution.')
parser.add_argument('--n_depths', type=int, default=120, help='Number of depths to create in 3D deconvolution.')
parser.add_argument('--deconv_limit', type=float, default=10000, help='Maximum intensity allowed from doconvolution.')
parser.add_argument('--deconv_depth_split', type=int, default=6, help='Number of depths to simultaneously deconvolve in the gpu.')
parser.add_argument('--deconv_gpu', type=int, default=1, help='GPU to use for deconvolution, -1 to use CPU, this is very memory intensive.')
parser.add_argument('--output_path', nargs='?', default='')
# parser.add_argument('--output_path', nargs='?', default=runs_dir + '/garbage/')
parser.add_argument('--main_gpu', nargs='+', type=int, default=[0], help='List of GPUs to use: [0,1]')
# Set to zero if debuging
n_threads = 0
args = parser.parse_args()
# Select which devices to use
if len(args.main_gpu)>0:
device = "cuda:" + str(args.main_gpu[0])
else:
if args.main_gpu==-1:
device = "cpu"
else:
device = "cuda"
args.main_gpu = [0]
# Deconvolution can be heavy on the GPU, and sometimes it doesn't fit, so use -1 for CPU
if args.deconv_gpu==-1:
device_deconv = "cpu"
else:
device_deconv = "cuda:" + str(args.deconv_gpu)
if n_threads!=0:
torch.set_num_threads(n_threads)
checkpoint_path = None
if len(args.checkpoint)>0:
checkpoint = torch.load(args.checkpoint, map_location=device)
currArgs = args
argsModel = checkpoint['args']
# Get images
dataset = XLFMDatasetFull(args.data_folder, args.lenslet_file, argsModel.subimage_shape, img_shape=2*[argsModel.img_size],
images_to_use=args.images_to_use, divisor=1, isTiff=True, n_frames_net=argsModel.n_frames,
load_all=True, load_sparse=False, load_vols=False, temporal_shifts=args.temporal_shifts, eval_video=True)
# Get normalization values
max_images,max_images_sparse,max_volumes = dataset.get_max()
# Normalization from SLNet
mean_imgs,std_images,mean_vols,std_vols = checkpoint['statistics']
mean_imgs = mean_imgs.to(device)
std_images = std_images.to(device)
mean_vols = mean_vols.to(device)
std_vols = std_vols.to(device)
n_images = len(dataset)
# Get volume desired shape
output_shape = argsModel.output_shape + [args.n_depths]
if len(output_shape)==2:
output_shape = argsModel.output_shape + [args.n_depths]
# Creating data indices for training and validation splits:
dataset_size = len(dataset)
# Create dataloader
train_sampler = SequentialSampler(dataset)
# Create output directory
head, tail = os.path.split(args.checkpoint)
output_dir = head + '/Dataset_' + datetime.now().strftime('%Y_%m_%d__%H:%M:%S') + '_' + str(args.n_depths) + 'nD__' + str(args.n_simulations) + 'nS__' + args.prefix
print('Output directory: ' + output_dir)
# Create directories
# XLFM_image: Raw XLFM image
# XLFM_stack: Deconvolution of raw images (not computed here)
# XLFM_stack_S: Deconvolution of sparse image generated by SD algorithm
# XLFM_stack_SL: Deconvolution of sparse image generated by SLNet
if not os.path.exists(output_dir):
os.mkdir(output_dir)
os.mkdir(output_dir + '/XLFM_image')
os.mkdir(output_dir + '/XLFM_stack')
os.mkdir(output_dir + '/XLFM_stack_S')
os.mkdir(output_dir + '/XLFM_stack_S_SL')
# Tensorboard logger
writer = SummaryWriter(output_dir)
writer.add_text('arguments',str(vars(args)),0)
writer.add_text('arguments_model',str(vars(checkpoint['args'])),0)
writer.flush()
# Copy files and model to output folder
try:
copyfile(os.path.dirname(args.checkpoint)+'/files.zip', output_dir+'/files.zip')
copyfile(args.checkpoint, output_dir + '/' + tail)
# Extract the files used for training SLNet, a different type of version control
with zipfile.ZipFile(os.path.dirname(args.checkpoint)+'/files.zip', "r") as zip_ref:
os.makedirs('tmp_files', exist_ok=True)
zip_ref.extractall('tmp_files/')
from tmp_files.nets.SLNet import *
except:
pass
# Create net and load checkpoint
net = SLNet(dataset.n_frames, mu_sum_constraint=argsModel.SL_mu_sum_constraint, alpha_l1=argsModel.SL_alpha_l1).to(device)
net.eval()
if 'module' in list(checkpoint['model_state_dict'])[0]:
net = nn.DataParallel(net)
net.load_state_dict(checkpoint['model_state_dict'])
net = net.module
else:
net.load_state_dict(checkpoint['model_state_dict'])
# timers
start = torch.cuda.Event(enable_timing=True)
end = torch.cuda.Event(enable_timing=True)
end_time_deconv_SL = 0
end_time_deconv_net = 0
# Load measured PSF from matlab file and compute OTF
# The computetion can be splited to fit it into the GPU, spliting n_depths/n_split
psf_shape = 2*[argsModel.img_size]
if currArgs.deconv_iterations > 0:
n_split = 20
OTF,psf_shape = load_PSF_OTF(currArgs.psf_file, output_shape, n_depths=args.deconv_n_depths,
n_split=n_split, lenslet_centers_file_out="", compute_transpose=True)
# OTF = OTF[:,OTF.shape[1]//2,...].unsqueeze(1).repeat(1,OTF.shape[1],1,1,1)
# If augmentation desired, check if the deconvolved volumes are already computed
if args.max_z_roll_augm > 0:
precomputed_volume_path = {'raw' : os.path.split(args.volume_raw_reference_path)[0],
'sparse': os.path.split(args.volume_sparse_reference_path)[0]}
precomputed_volume_path_list = {'raw' : sorted(glob.glob(args.volume_raw_reference_path)),
'sparse': sorted(glob.glob(args.volume_sparse_reference_path)) }
# Create array to gather all images, which contains:
# 0: input
# 1: dense SLNet
# 2: sparse SLNet
# 3: dense SL
# 4: sparse SL
tmp = 3
if args.SD_iterations > 0:
tmp = 5
all_images = np.zeros((tmp, args.n_simulations*len(args.temporal_shifts)) + tuple(psf_shape), 'float16')
# Compute images
with torch.no_grad():
mean_time = 0
mean_time_SL = 0
min_time = 10000.0
# Training
for nSimul in range(args.n_simulations):
print('Simulating ' + str(nSimul) + ' / ' + str(args.n_simulations) )
curr_index = nSimul%n_images
# fetch current pair
curr_img_stack, local_volumes = dataset.__getitem__(curr_index)
curr_img_stack = curr_img_stack.unsqueeze(0)
curr_img_stack = curr_img_stack.float()
# curr_img_stack = curr_img_stack / curr_img_stack.max() * 3000.0
curr_img_stack = curr_img_stack.half()
curr_img_stack = curr_img_stack.to(device)
if len(curr_img_stack.shape)>=5:
# assert len(curr_img_stack.shape)>=5, "If sparse is used curr_img_stack should contain both images, dense and sparse stacked in the last dim."
curr_img_sparse = curr_img_stack[...,-1].clone().to(device)
curr_img_stack = curr_img_stack[...,0].clone()
else:
curr_img_sparse = curr_img_stack.clone()
raw_image_stack = curr_img_stack.clone()
# Remove dark current from images
curr_img_stack -= args.dark_current
curr_img_stack = F.relu(curr_img_stack).detach()
curr_img_sparse -= args.dark_current_sparse
curr_img_sparse = F.relu(curr_img_sparse).detach()
if args.add_noise==1:
curr_max = curr_img_stack.max()
# Update new signal power
signal_power = (args.signal_power_min + (args.signal_power_max-args.signal_power_min) * torch.rand(1)).item()
curr_img_stack = signal_power/curr_max * curr_img_stack
# Add noise
curr_img_stack = pytorch_shot_noise.add_camera_noise(curr_img_stack)
curr_img_stack = curr_max/signal_power * curr_img_stack.to(device)
# Normalize images with the same settings as the SLNet was trained
curr_img_stack, local_volumes = normalize_type(curr_img_stack, local_volumes, argsModel.norm_type, mean_imgs, std_images, mean_vols, std_vols, max_images, max_volumes)
with autocast():
# torch.cuda.synchronize()
start.record()
# Run batch of predicted images in discriminator
dense_part = net(curr_img_stack)
# Record training time
end.record()
torch.cuda.synchronize()
end_time = start.elapsed_time(end) / curr_img_stack.shape[0]
mean_time += end_time
min_time = min(min_time, end_time)
sparse_part = F.relu(curr_img_stack - dense_part)
# Renormalize images
dense_part, _ = normalize_type(dense_part.float(), local_volumes, argsModel.norm_type, mean_imgs, std_images, mean_vols, std_vols, max_images, max_volumes, inverse=True)
sparse_part, _ = normalize_type(sparse_part.float(), local_volumes, argsModel.norm_type, mean_imgs, std_images, mean_vols, std_vols, max_images, max_volumes, inverse=True)
curr_img_stack, _ = normalize_type(curr_img_stack.float(), local_volumes, argsModel.norm_type, mean_imgs, std_images, mean_vols, std_vols, max_images, max_volumes, inverse=True)
sparse_part = F.relu(curr_img_stack-dense_part.detach())
# Deconvolve the SLNet sparse image and store the 3D stack
if currArgs.deconv_iterations > 0:
img_shape = sparse_part.shape[-2:]
try:
deconv_vol = dataset.read_tiff_stack(precomputed_volume_path_list['sparse'][curr_index], out_datatype=np.float32).permute(2,0,1).unsqueeze(0)
print('Loaded sparse deconvolution')
except:
start.record()
img_to_deconv_net = sparse_part[:,currArgs.frame_to_grab].unsqueeze(1).float()
deconv_vol,proj_net,forward_net,_ = XLFMDeconv(OTF, img_to_deconv_net, currArgs.deconv_iterations,
device=device_deconv, all_in_device=0,
nSplitFourier=args.deconv_depth_split,max_allowed=args.deconv_limit)
end.record()
torch.cuda.synchronize()
end_time_deconv_net = start.elapsed_time(end) / curr_img_stack.shape[0]
deconv_vol = deconv_vol[:, currArgs.deconv_n_depths//2-currArgs.n_depths//2 : currArgs.deconv_n_depths//2+currArgs.n_depths//2,...]
print(end_time_deconv_net,'s ',str(deconv_vol.max()))
# Augmentation needed? We need 3 volumes for this, then shift in z then compute their forward projections
if args.max_z_roll_augm > 0:
# Create new image storages
augmented_images = {'raw' : sparse_part.clone(), 'sparse' : sparse_part.clone()}
augmented_raw_image_stack = raw_image_stack.clone()
# Temprarly store augmented volumes
augmented_sparse_volumes = deconv_vol.clone().unsqueeze(-1).repeat(1,1,1,1,len(args.temporal_shifts))
# Roll volume
roll_amount = torch.randint(-args.max_z_roll_augm, args.max_z_roll_augm, [1])[0]
for img_id in range(len(args.temporal_shifts)):
vol_id = args.temporal_shifts[img_id] + curr_index
# Select image to deconvolve
curr_image = {'raw':raw_image_stack[:,img_id,...].clone().unsqueeze(1), 'sparse':sparse_part[:,img_id,...].clone().unsqueeze(1)}
# Is it the raw or the sparse image? we need both
for type_volume in ['raw','sparse']:
volume_exists = False
# Check if volumes exist
try:
curr_vol = dataset.read_tiff_stack(precomputed_volume_path_list[type_volume][vol_id], out_datatype=np.float32).permute(2,0,1).unsqueeze(0)
volume_exists = True
print('Loaded augmented ' + type_volume + ' deconvolution')
except: # Deconvolve them
curr_vol,_,_,_ = XLFMDeconv(OTF, curr_image[type_volume].float(), currArgs.deconv_iterations,
device=device_deconv, all_in_device=0,
nSplitFourier=args.deconv_depth_split,max_allowed=args.deconv_limit)
if not volume_exists:
imsave(precomputed_volume_path[type_volume] + '/XLFM_stack_'+ "%03d" % vol_id + '.tif', curr_vol.cpu().numpy())
curr_vol = torch.roll(curr_vol, (roll_amount.item()), 1)
# Compute new forward projection
new_img = XLFM_forward_projection(OTF, curr_vol, [1,1,OTF.shape[2],OTF.shape[2]], nSplitFourier=args.deconv_depth_split)
# Crop center to match original image
new_img = new_img[:,:,new_img.shape[2]//2-img_shape[0]//2 : new_img.shape[2]//2+img_shape[0]//2, \
new_img.shape[3]//2-img_shape[1]//2 : new_img.shape[3]//2+img_shape[1]//2]
# Update sparse image and store it
augmented_images[type_volume][:,img_id,...] = new_img[:,0,...]/new_img.sum() * curr_image[type_volume].cpu().float().sum()
# Store augmented volumes
augmented_sparse_volumes[...,img_id] = curr_vol.clone()
# Overwrite output images
sparse_part = augmented_images['sparse'].clone()
raw_image_stack = augmented_images['raw'].clone()
# Overwrite volume
deconv_vol = augmented_sparse_volumes[...,currArgs.frame_to_grab]
# Generate GT with SL decomposition and deconvolve it
if args.SD_iterations > 0:
dense_part_SL,sparse_part_SL,_ = SLDecomposition(curr_img_stack, maxIter=args.SD_iterations)
end.record()
torch.cuda.synchronize()
end_time_SL = start.elapsed_time(end) / curr_img_stack.shape[0]
mean_time_SL += end_time_SL
all_images[3,nSimul,:,:] = dense_part_SL[0,args.frame_to_grab,...].cpu().numpy().astype(np.float16)
all_images[4,nSimul,:,:] = sparse_part_SL[0,args.frame_to_grab,...].cpu().numpy().astype(np.float16)
if currArgs.deconv_iterations > 0:
start.record()
img_to_deconv_SL = sparse_part_SL[:,currArgs.frame_to_grab].unsqueeze(1).float()
deconv_SL,proj_SL,forward_SL,_ = XLFMDeconv(OTF, img_to_deconv_SL, currArgs.deconv_iterations,
device=device, all_in_device=args.deconv_gpu)
end.record()
torch.cuda.synchronize()
end_time_deconv_SL = start.elapsed_time(end) / curr_img_stack.shape[0]
deconv_SL = deconv_SL[:, currArgs.deconv_n_depths//2-currArgs.n_depths//2 : currArgs.deconv_n_depths//2+currArgs.n_depths//2,...]
# set to true for plotting
if False:
plot_multiplier = 4
plt.subplot(2,3,1)
plt.imshow(img_to_deconv_SL[0,0,...].cpu().numpy())
plt.title('Input SL')
plt.subplot(2,3,2)
plt.imshow(forward_SL[0,0,...].cpu().numpy())
plt.title('forward SL')
plt.subplot(2,3,3)
plt.imshow(proj_SL[0,0,...].clamp(0,proj_SL.max()/plot_multiplier).cpu().numpy())
plt.title('proj SL')
plt.subplot(2,3,4)
plt.imshow(img_to_deconv_net[0,0,...].clamp(0,img_to_deconv_net.max()/plot_multiplier).cpu().numpy())
plt.title('Input SLNet')
plt.subplot(2,3,5)
plt.imshow(forward_net[0,0,...].clamp(0,forward_net.max()/plot_multiplier).cpu().numpy())
plt.title('forward SLNet')
plt.subplot(2,3,6)
plt.imshow(proj_net[0,0,...].clamp(0,proj_net.max()/plot_multiplier).cpu().numpy())
plt.title('proj SLNet')
plt.show()
# Store current images
curr_img_ix = nSimul * len(args.temporal_shifts)
all_images[0,curr_img_ix:curr_img_ix+len(args.temporal_shifts),...] = raw_image_stack.cpu().numpy().astype(np.float16)
all_images[1,curr_img_ix:curr_img_ix+len(args.temporal_shifts),...] = dense_part.cpu().numpy().astype(np.float16)
all_images[2,curr_img_ix:curr_img_ix+len(args.temporal_shifts),...] = sparse_part.cpu().numpy().astype(np.float16)
# Store volumes
if currArgs.deconv_iterations > 0:
imsave(output_dir + '/XLFM_stack_S/XLFM_stack_'+ "%03d" % nSimul + '.tif', deconv_vol.cpu().numpy())
if args.SD_iterations > 0:
imsave(output_dir + '/XLFM_stack_S_SL/XLFM_stack_'+ "%03d" % nSimul + '.tif', deconv_SL.cpu().numpy())
rescale_img = lambda img: F.interpolate( img, [img.shape[-2]//10, img.shape[-1]//10])
# Store images and log them to tensorboard
img_labels = ['input','dense_SLNet','sparse_SLNet','dense_SL','sparse_SL']
for nImg in range(all_images.shape[0]):
img = tv.utils.make_grid(rescale_img(torch.from_numpy(all_images[nImg,args.frame_to_grab+nSimul*len(args.temporal_shifts),...]).float().unsqueeze(0).unsqueeze(0).cpu().detach()), normalize=True, scale_each=False)
writer.add_image(img_labels[nImg],img, nSimul)
if "proj_net" in locals():
writer.add_image('proj_SLNet',tv.utils.make_grid(proj_net[0,...].cpu(), normalize=True), nSimul)
if "proj_SL" in locals():
writer.add_image('proj_SL',tv.utils.make_grid(proj_SL[0,...].cpu(), normalize=True), nSimul)
writer.add_scalar('times/Net', end_time, nSimul)
if args.SD_iterations>0:
writer.add_scalar('times/SL', end_time_SL, nSimul)
if args.deconv_iterations>0:
writer.add_scalar('times/deconv_SL', end_time_deconv_SL, nSimul)
writer.add_scalar('times/deconv_SLNet', end_time_deconv_net, nSimul)
img_labels = [ 'XLFM_image_stack.tif',
'XLFM_image_stack_D_SLNet.tif',
'XLFM_image_stack_S.tif',
'XLFM_image_stack_D_SL.tif',
'XLFM_image_stack_S_SL.tif']
for nImg in range(all_images.shape[0]):
imsave(output_dir + '/XLFM_image/' + img_labels[nImg], all_images[nImg,...])
# Store computation times in tensorboard
writer.add_scalar('mean/time', mean_time)
writer.add_scalar('mean/time_SL', mean_time_SL)
if args.deconv_iterations>0:
writer.add_scalar('mean/time_deconv', end_time_deconv_net)
if args.SD_iterations>0:
writer.add_scalar('mean/time_SL', mean_time_SL)
if args.deconv_iterations>0:
writer.add_scalar('mean/time_deconv_SL', end_time_deconv_SL)
writer.add_scalar('mean/min_time', min_time)
writer.close()