-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathmainTrainSLNet.py
456 lines (374 loc) · 22 KB
/
mainTrainSLNet.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
import torch
import sys
from PIL import Image
from torch.utils import data
from torch.utils.data.sampler import SubsetRandomSampler,SequentialSampler
from torch.utils.tensorboard import SummaryWriter
from torch.cuda.amp import autocast,GradScaler
import torchvision as tv
import torch.nn as nn
import matplotlib.pyplot as plt
import subprocess
import numpy as np
from datetime import datetime
import argparse
import math
import zipfile
from tqdm import tqdm
import utils.pytorch_shot_noise as pytorch_shot_noise
from nets.SLNet import SLNet
from utils.XLFMDataset import XLFMDatasetFull
from utils.misc_utils import *
runs_dir = ""
data_dir = ""
main_folder = "XLFMNet/"
runs_dir = "XLFMNet/runs/"
data_dir = "XLFM/"
# Real image
dataset_paths = {
'fish2' : f'{data_dir}/dataset_fish2_10Hz/',
'fish_conf' : f'{data_dir}/fish_conf/',
}
dataset_to_use = 'fish_conf'
dataset_to_use_test = 'fish2'
# Arguments
parser = argparse.ArgumentParser()
parser.add_argument('--data_folder', nargs='?', default= dataset_paths[dataset_to_use], help='Input training images path in format /XLFM_image/XLFM_image_stack.tif and XLFM_image_stack_S.tif in case of a sparse GT stack.')
parser.add_argument('--data_folder_test', nargs='?', default= dataset_paths[dataset_to_use_test], help='Input testing image path')
parser.add_argument('--lenslet_file', nargs='?', default= "lenslet_coords.txt", help='Text file with the lenslet coordinates pairs x y "\n"')
parser.add_argument('--files_to_store', nargs='+', default=[], help='Relative paths of files to store in a zip when running this script, for backup.')
parser.add_argument('--prefix', nargs='?', default= "Fish2", help='Prefix string for the output folder.')
parser.add_argument('--checkpoint', nargs='?', default= "", help='File path of checkpoint of previous run.')
# Images related arguments
parser.add_argument('--images_to_use', nargs='+', type=int, default=list(range(0,90,1)), help='Indeces of images to train on.')
parser.add_argument('--images_to_use_test', nargs='+', type=int, default=list(range(0,90,1)), help='Indeces of images to test on.')
parser.add_argument('--lenslet_crop_size', type=int, default=512, help='Side size of the microlens image.')
parser.add_argument('--img_size', type=int, default=2160, help='Side size of input image, square prefered.')
# Training arguments
parser.add_argument('--batch_size', type=int, default=8, help='Training batch size.')
parser.add_argument('--learning_rate', type=float, default=0.0001, help='Training learning rate.')
parser.add_argument('--max_epochs', type=int, default=101, help='Training epochs to run.')
parser.add_argument('--validation_split', type=float, default=0.1, help='Which part to use for validation 0 to 1.')
parser.add_argument('--eval_every', type=int, default=10, help='How often to evaluate the testing/validaton set.')
parser.add_argument('--shuffle_dataset', type=int, default=1, help='Radomize training images 0 or 1')
parser.add_argument('--use_bias', type=int, default=0, help='Use bias during training? 0 or 1')
parser.add_argument('--plot_images', type=int, default=0, help='Plot results with matplotlib?')
# Noise arguments
parser.add_argument('--add_noise', type=int, default=0, help='Apply noise to images? 0 or 1')
parser.add_argument('--signal_power_max', type=float, default=30**2, help='Max signal value to control signal to noise ratio when applyting noise.')
parser.add_argument('--signal_power_min', type=float, default=60**2, help='Min signal value to control signal to noise ratio when applyting noise.')
parser.add_argument('--norm_type', type=float, default=2, help='Normalization type, see the normalize_type function for more info.')
parser.add_argument('--dark_current', type=float, default=106, help='Dark current value of camera.')
parser.add_argument('--dark_current_sparse', type=float, default=0, help='Dark current value of camera.')
# Sparse decomposition arguments
parser.add_argument('--n_frames', type=int, default=3, help='Number of frames used as input to the SLNet.')
parser.add_argument('--rank', type=int, default=3, help='Rank enforcement for SVD. 6 is good')
parser.add_argument('--SL_alpha_l1', type=float, default=0.1, help='Threshold value for alpha in sparse decomposition.')
parser.add_argument('--SL_mu_sum_constraint', type=float, default=1e-2, help='Threshold value for mu in sparse decomposition.')
parser.add_argument('--weight_multiplier', type=float, default=0.5, help='Initialization multiplyier for weights, important parameter.')
# SLNet config
parser.add_argument('--temporal_shifts', nargs='+', type=int, default=[0,49,99], help='Which frames to use for training and testing.')
parser.add_argument('--use_random_shifts', nargs='+', type=int, default=0, help='Randomize the temporal shifts to use? 0 or 1')
parser.add_argument('--frame_to_grab', type=int, default=0, help='Which frame to show from the sparse decomposition?')
parser.add_argument('--l0_ths', type=float, default=0.05, help='Threshold value for alpha in nuclear decomposition')
# misc arguments
parser.add_argument('--output_path', nargs='?', default=runs_dir + '/camera_ready_github/')
parser.add_argument('--main_gpu', nargs='+', type=int, default=[], help='List of GPUs to use: [0,1]')
n_threads = 0
args = parser.parse_args()
if len(args.main_gpu)>0:
device = "cuda:" + str(args.main_gpu[0])
else:
device = "cuda"
args.main_gpu = [0]
if n_threads!=0:
torch.set_num_threads(n_threads)
checkpoint_path = None
if len(args.checkpoint)>0:
checkpoint = torch.load(args.checkpoint, map_location=device)
checkpoint_path = args.checkpoint
currArgs = args
args = checkpoint['args']
args.max_epochs = currArgs.max_epochs
args.images_to_use = currArgs.images_to_use
args.dark_current = currArgs.dark_current
args.learning_rate = currArgs.learning_rate
args.batch_size = currArgs.batch_size
args.data_folder_test = currArgs.data_folder_test
args.dark_current_sparse = currArgs.dark_current_sparse
args.shuffle_dataset = bool(args.shuffle_dataset)
# Get commit number
label = subprocess.check_output(["git", "describe", "--always"]).strip()
save_folder = args.output_path + datetime.now().strftime('%Y_%m_%d__%H:%M:%S') + str(args.main_gpu[0]) + "_gpu__" + args.prefix
print(f'Logging dir: {save_folder}')
# Load datasets
args.subimage_shape = 2*[args.lenslet_crop_size]
args.output_shape = 2*[args.lenslet_crop_size]
dataset = XLFMDatasetFull(args.data_folder, args.lenslet_file, args.subimage_shape, img_shape=2*[args.img_size],
images_to_use=args.images_to_use,
load_sparse=False, load_vols=False, temporal_shifts=args.temporal_shifts, use_random_shifts=args.use_random_shifts)
dataset_test = XLFMDatasetFull(args.data_folder_test, args.lenslet_file, args.subimage_shape, 2*[args.img_size],
images_to_use=args.images_to_use_test,
load_vols=False, load_sparse=False)
# Get normalization values
max_images,max_images_sparse,max_volumes = dataset.get_max()
mean_imgs,std_images,mean_vols,std_vols = dataset.get_statistics()
dataset.stacked_views, _ = normalize_type(dataset.stacked_views, 0, args.norm_type, mean_imgs, std_images, mean_vols, std_vols, max_images, max_volumes)
dataset_test.stacked_views, _ = normalize_type(dataset_test.stacked_views, 0, args.norm_type, mean_imgs, std_images, mean_vols, std_vols, max_images, max_volumes)
# Creating data indices for training and validation splits:
dataset_size = len(dataset)
indices = list(range(dataset_size))
split = int(np.ceil(args.validation_split * dataset_size))
torch.manual_seed(261290)
if args.shuffle_dataset :
np.random.shuffle(indices)
train_indices, val_indices = indices[split:], indices[:split]
# Create dataloaders
train_sampler = SubsetRandomSampler(train_indices)
valid_sampler = SubsetRandomSampler(val_indices)
data_loaders = \
{'train' : \
data.DataLoader(dataset, batch_size=args.batch_size,
sampler=train_sampler, pin_memory=False, num_workers=n_threads), \
'val' : \
data.DataLoader(dataset, batch_size=args.batch_size,
sampler=valid_sampler, pin_memory=False, num_workers=n_threads), \
'test' : \
data.DataLoader(dataset_test, batch_size=1, pin_memory=False, num_workers=n_threads, shuffle=True)
}
# Eval samples
data_loaders_save = \
{'train' : \
data.DataLoader(dataset, batch_size=1,
sampler=SequentialSampler(list(range(dataset_size))), pin_memory=False, num_workers=n_threads), \
'test' : \
data.DataLoader(dataset_test, batch_size=1,
sampler=SequentialSampler(list(range(len(dataset_test)))), pin_memory=False, num_workers=n_threads, shuffle=False)
}
# Weight initialization function
def init_weights(m):
if type(m) == nn.Conv2d or type(m) == nn.Conv3d or type(m) == nn.ConvTranspose2d:
torch.nn.init.kaiming_uniform_(m.weight,a=math.sqrt(2))
m.weight.data = m.weight.data.abs()*args.weight_multiplier
# Create net
net = SLNet(dataset.n_frames, use_bias=args.use_bias, mu_sum_constraint=args.SL_mu_sum_constraint, alpha_l1=args.SL_alpha_l1).to(device)
net.apply(init_weights)
# Use multiple gpus?
if len(args.main_gpu)>1:
net = nn.DataParallel(net, args.main_gpu, args.main_gpu[0])
print("Let's use", torch.cuda.device_count(), "GPUs!")
# Trainable parameters
trainable_params = list(net.parameters())
params = sum([np.prod(p.size()) for p in net.parameters()])
# Create optimizer
optimizer = torch.optim.Adam(trainable_params, lr=args.learning_rate)
# create gradient scaler for mixed precision training
scaler = GradScaler()
# Is there a checkpoint? load it
start_epoch = 0
if checkpoint_path:
net.load_state_dict(checkpoint['model_state_dict'])
optimizer.load_state_dict(checkpoint['optimizer_state_dict'])
scaler.load_state_dict(checkpoint['scaler_state_dict'])
start_epoch = checkpoint['epoch']-1
save_folder += '_C'
# Create summary writer to log stuff
writer = SummaryWriter(log_dir=save_folder)
writer.add_text('arguments',str(vars(args)),0)
writer.flush()
writer.add_scalar('params/', params)
# Store files for backup
zf = zipfile.ZipFile(save_folder + "/files.zip", "w")
for ff in args.files_to_store:
zf.write(ff)
zf.close()
# timers
start = torch.cuda.Event(enable_timing=True)
end = torch.cuda.Event(enable_timing=True)
# Loop over epochs
for epoch in range(start_epoch, args.max_epochs):
for curr_train_stage in ['train','val','test']:
# Grab current data_loader
curr_loader = data_loaders[curr_train_stage]
curr_loader_len = curr_loader.sampler.num_samples if curr_train_stage=='test' else len(curr_loader.batch_sampler.sampler.indices)
if curr_train_stage=='train':
net.train()
torch.set_grad_enabled(True)
if curr_train_stage=='val' or curr_train_stage=='test':
if epoch%args.eval_every!=0:
continue
net.eval()
torch.set_grad_enabled(False)
# Store losses of current epoch
mean_loss = 0
mean_psnr = 0
mean_time = 0
mean_eigen_values = torch.zeros([args.n_frames])
mean_eigen_values_cropped = torch.zeros([args.n_frames])
mean_eigen_crop = 0
perf_metrics = {}
perf_metrics['Rank_SLNet'] = []
perf_metrics['Fro_SLNet'] = []
perf_metrics['Fro_Ratio_SLNet'] = []
perf_metrics['mean_error_SLNet'] = []
perf_metrics['L1_SLNet'] = []
# Training
for ix,(curr_img_stack, _) in enumerate(tqdm(curr_loader, desc='Optimizing images')):
curr_img_stack = curr_img_stack.to(device)
# Apply noise if needed, and only in the test set, as the train set comes from real images
if args.add_noise==1 and curr_train_stage!='test':
curr_max = curr_img_stack.max()
# Update new signal power
signal_power = (args.signal_power_min + (args.signal_power_max-args.signal_power_min) * torch.rand(1)).item()
curr_img_stack = signal_power/curr_max * curr_img_stack
# Add noise
curr_img_stack = pytorch_shot_noise.add_camera_noise(curr_img_stack)
curr_img_stack = curr_img_stack.to(device)
if curr_train_stage=='train':
net.zero_grad()
optimizer.zero_grad()
with autocast():
torch.cuda.synchronize()
start.record()
# Predict dense part with the network
dense_part = F.relu(net(curr_img_stack))
# Compute sparse part
sparse_part = F.relu(curr_img_stack-dense_part)
# Measure time
end.record()
torch.cuda.synchronize()
end_time = start.elapsed_time(end) / curr_img_stack.shape[0]
mean_time += end_time
# Compute sparse decomposition on a patch, as the full image doesn't fit in memory due to SVD
center = 64
if curr_train_stage!='train':
center = 32
coord_to_crop = torch.randint(center,dense_part.shape[3]-center, [2])
# Grab patches
dense_crop = dense_part[:,:,coord_to_crop[0]-center:coord_to_crop[0]+center,coord_to_crop[1]-center:coord_to_crop[1]+center].contiguous()
sparse_crop = sparse_part[:,:,coord_to_crop[0]-center:coord_to_crop[0]+center,coord_to_crop[1]-center:coord_to_crop[1]+center].contiguous()
curr_img_crop = curr_img_stack[:,:,coord_to_crop[0]-center:coord_to_crop[0]+center,coord_to_crop[1]-center:coord_to_crop[1]+center].detach()
# Reconstruction error
Y = (curr_img_crop - dense_crop - sparse_crop)
# Nuclear norm
dense_vector = dense_crop.view(dense_part.shape[0],dense_part.shape[1],-1)
with autocast(enabled=False):
(u,s,v) = torch.svd_lowrank(dense_vector.permute(0,2,1).float(), q=args.rank)
# eigenvalues thresholding operation
s = torch.sign(s) * torch.max(s.abs() - net.mu_sum_constraint, torch.zeros_like(s))
# Reconstruct the images from the eigen information
reconstructed_vector = torch.zeros([dense_crop.shape[0],dense_crop.shape[1],dense_crop.shape[2]*dense_crop.shape[3]],device=device)
for nB in range(s.shape[0]):
currS = torch.diag(s[nB,:])
reconstructed_vector[nB,...] = torch.mm(torch.mm(u[nB,...], currS), v[nB,...].t()).t()
reconstructed_dense = reconstructed_vector.view(dense_crop.shape)
# Compute full loss
full_loss = F.l1_loss(reconstructed_dense,curr_img_crop) + net.alpha_l1 * sparse_crop.abs().mean() + Y.abs().mean()
if ix==0 and args.plot_images:
sparse_crop = F.relu(curr_img_crop - reconstructed_dense)
plt.clf()
for n in range(0,3):
plt.subplot(3,4,4*n+1)
plt.imshow(curr_img_crop[0,n,...].detach().cpu().float().numpy())
plt.title('Input')
plt.subplot(3,4,4*n+2)
plt.imshow(dense_crop[0,n,...].detach().cpu().float().numpy())
plt.title('Dense prediction')
plt.subplot(3,4,4*n+3)
plt.imshow(sparse_crop[0,n,...].detach().cpu().float().numpy())
plt.title('Sparse prediction')
plt.subplot(3,4,4*n+4)
plt.imshow(Y[0,n,...].detach().cpu().float().numpy())
plt.title('Y')
plt.pause(0.1)
plt.draw()
if curr_train_stage=='train':
full_loss.backward()
# Check fo NAN in training
broken = False
with torch.no_grad():
for param in net.parameters():
if param.grad is not None:
if torch.isnan(param.grad.mean()):
broken = True
if broken:
continue
optimizer.step()
# detach tensors for display
# curr_img_sparse = curr_img_sparse.detach()
curr_img_stack = curr_img_stack.detach()
dense_part = dense_part.detach()
sparse_part = sparse_part.detach()
# Normalize back
curr_img_stack,_ = normalize_type(curr_img_stack.float(), 0, args.norm_type, mean_imgs, std_images, mean_vols, std_vols, max_images, max_volumes, inverse=True)
sparse_part,_ = normalize_type(sparse_part.float(), 0, args.norm_type, mean_imgs, std_images, mean_vols, std_vols, max_images, max_volumes, inverse=True)
dense_part,_ = normalize_type(dense_part.float(), 0, args.norm_type, mean_imgs, std_images, mean_vols, std_vols, max_images, max_volumes, inverse=True)
sparse_part = F.relu(curr_img_stack-dense_part.detach())
mean_loss += full_loss.item()
# Compute different performance metrics
mean_loss /= curr_loader_len
mean_psnr = 20 * torch.log10(max_images / torch.sqrt(torch.tensor(mean_loss)))
mean_time /= curr_loader_len
if epoch%args.eval_every==0:
# Create debug images
M = curr_img_stack[:,args.frame_to_grab,...].unsqueeze(1)
S_SLNet = sparse_part[:,args.frame_to_grab,...].unsqueeze(1)
L_SLNet = dense_part[:,args.frame_to_grab,...].unsqueeze(1)
Rank_SLNet = torch.matrix_rank(L_SLNet[0,0,...].float()).item()
fro_M = torch.norm(M).item()
fro_SLNet = torch.norm(M-L_SLNet-S_SLNet).item()
mean_error = (M-L_SLNet-S_SLNet).mean().item()
L1_SLNet = (S_SLNet>(args.l0_ths*S_SLNet.max())).float().sum().item() / torch.numel(S_SLNet)
perf_metrics['L1_SLNet'].append(L1_SLNet)
perf_metrics['mean_error_SLNet'].append(mean_error)
perf_metrics['Rank_SLNet'].append(Rank_SLNet)
perf_metrics['Fro_SLNet'].append(fro_SLNet)
perf_metrics['Fro_Ratio_SLNet'].append(fro_SLNet/fro_M)
input_noisy_grid = tv.utils.make_grid(curr_img_stack[0,0,...].float().unsqueeze(0).cpu().data.detach(), normalize=True, scale_each=False)
sparse_part = F.relu(sparse_part.detach()).float()
dense_prediction = F.relu(dense_part.detach()).float()
reconstructed_dense_prediciton = F.relu(reconstructed_dense.detach()).float()
Y = sparse_part+dense_prediction
sparse_part /= Y.max()
input_intermediate_sparse_grid = tv.utils.make_grid(sparse_part[0,0,...].float().unsqueeze(0).cpu().data.detach(), normalize=True, scale_each=False)
dense_prediction /= Y.max()
input_intermediate_dense_grid = tv.utils.make_grid(dense_prediction[0,0,...].float().unsqueeze(0).cpu().data.detach(), normalize=True, scale_each=False)
writer.add_image('input/'+curr_train_stage, input_noisy_grid, epoch)
writer.add_image('sparse/'+curr_train_stage, input_intermediate_sparse_grid, epoch)
writer.add_image('dense/'+curr_train_stage, input_intermediate_dense_grid, epoch)
writer.add_scalar('Loss/'+curr_train_stage, mean_loss, epoch)
# writer.add_scalar('Loss/mean_sparse_l1_'+curr_train_stage, mean_sparse_l1, epoch)
writer.add_scalar('regularization_weights/alpha_l1', net.alpha_l1, epoch)
writer.add_scalar('regularization_weights/mu_sum_constraint', net.mu_sum_constraint.item(), epoch)
writer.add_scalar('regularization_weights/eigen_crop_percentage', mean_eigen_crop, epoch)
writer.add_scalar('psnr/'+curr_train_stage, mean_psnr, epoch)
writer.add_scalar('times/'+curr_train_stage, mean_time, epoch)
writer.add_scalar('lr/'+curr_train_stage, args.learning_rate, epoch)
# writer.add_histogram('eigenvalues/'+curr_train_stage, mean_eigen_values, epoch)
# writer.add_histogram('eigenvalues_cropped/'+curr_train_stage, mean_eigen_values_cropped, epoch)
for k,v in perf_metrics.items():
writer.add_scalar('metrics/'+k+'_'+curr_train_stage, v[-1], epoch)
print(str(epoch) + ' ' + curr_train_stage + " loss: " + str(mean_loss) + " eigenCrop: " + str(mean_eigen_crop) + " time: " + str(mean_time))#, end="\r")
if epoch%25==0:
torch.save({
'epoch': epoch,
'args' : args,
'statistics' : [mean_imgs,std_images,mean_vols,std_vols ],
'model_state_dict': net.state_dict(),
'optimizer_state_dict': optimizer.state_dict(),
'scaler_state_dict' : scaler.state_dict(),
'loss': mean_loss},
save_folder + '/model_'+str(epoch))
with torch.no_grad():
for curr_train_stage in ['train']:
curr_loader = data_loaders_save[curr_train_stage]
output_sparse_images = torch.zeros_like(curr_img_stack[0,0,...].unsqueeze(0).unsqueeze(0), device='cpu').repeat(len(curr_loader),1,1,1)
for ix,(curr_img_stack, _) in enumerate(curr_loader):
curr_img_stack = curr_img_stack.to(device)
with autocast():
# Predict dense part with the network
dense_part = F.relu(net(curr_img_stack))
# Compute sparse part
sparse_part = F.relu(curr_img_stack-dense_part)
output_sparse_images[ix,...] = sparse_part[0,0,].detach().cpu()
save_image(output_sparse_images.permute(1,0,2,3),f'{save_folder}/Sparse_{curr_train_stage}_ep_{epoch}.tif')