-
Notifications
You must be signed in to change notification settings - Fork 3.8k
/
Copy pathsgc.py
40 lines (31 loc) · 1.43 KB
/
sgc.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
import argparse
import torch
import torch.nn.functional as F
from citation import get_planetoid_dataset, random_planetoid_splits, run
from torch_geometric.nn import SGConv
parser = argparse.ArgumentParser()
parser.add_argument('--dataset', type=str, required=True)
parser.add_argument('--random_splits', action='store_true')
parser.add_argument('--runs', type=int, default=100)
parser.add_argument('--epochs', type=int, default=200)
parser.add_argument('--lr', type=float, default=0.1)
parser.add_argument('--weight_decay', type=float, default=0.0005)
parser.add_argument('--early_stopping', type=int, default=10)
parser.add_argument('--no_normalize_features', action='store_true')
parser.add_argument('--K', type=int, default=2)
args = parser.parse_args()
class Net(torch.nn.Module):
def __init__(self, dataset):
super().__init__()
self.conv1 = SGConv(dataset.num_features, dataset.num_classes,
K=args.K, cached=True)
def reset_parameters(self):
self.conv1.reset_parameters()
def forward(self, data):
x, edge_index = data.x, data.edge_index
x = self.conv1(x, edge_index)
return F.log_softmax(x, dim=1)
dataset = get_planetoid_dataset(args.dataset, args.no_normalize_features)
permute_masks = random_planetoid_splits if args.random_splits else None
run(dataset, Net(dataset), args.runs, args.epochs, args.lr, args.weight_decay,
args.early_stopping, permute_masks)