-
Notifications
You must be signed in to change notification settings - Fork 3.7k
/
graph_gps.py
149 lines (124 loc) · 4.95 KB
/
graph_gps.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
import argparse
import os.path as osp
from typing import Any, Dict, Optional
import torch
from torch.nn import (
BatchNorm1d,
Embedding,
Linear,
ModuleList,
ReLU,
Sequential,
)
from torch.optim.lr_scheduler import ReduceLROnPlateau
import torch_geometric.transforms as T
from torch_geometric.datasets import ZINC
from torch_geometric.loader import DataLoader
from torch_geometric.nn import GINEConv, GPSConv, global_add_pool
from torch_geometric.nn.attention import PerformerAttention
path = osp.join(osp.dirname(osp.realpath(__file__)), '..', 'data', 'ZINC-PE')
transform = T.AddRandomWalkPE(walk_length=20, attr_name='pe')
train_dataset = ZINC(path, subset=True, split='train', pre_transform=transform)
val_dataset = ZINC(path, subset=True, split='val', pre_transform=transform)
test_dataset = ZINC(path, subset=True, split='test', pre_transform=transform)
train_loader = DataLoader(train_dataset, batch_size=32, shuffle=True)
val_loader = DataLoader(val_dataset, batch_size=64)
test_loader = DataLoader(test_dataset, batch_size=64)
parser = argparse.ArgumentParser()
parser.add_argument(
'--attn_type', default='multihead',
help="Global attention type such as 'multihead' or 'performer'.")
args = parser.parse_args()
class GPS(torch.nn.Module):
def __init__(self, channels: int, pe_dim: int, num_layers: int,
attn_type: str, attn_kwargs: Dict[str, Any]):
super().__init__()
self.node_emb = Embedding(28, channels - pe_dim)
self.pe_lin = Linear(20, pe_dim)
self.pe_norm = BatchNorm1d(20)
self.edge_emb = Embedding(4, channels)
self.convs = ModuleList()
for _ in range(num_layers):
nn = Sequential(
Linear(channels, channels),
ReLU(),
Linear(channels, channels),
)
conv = GPSConv(channels, GINEConv(nn), heads=4,
attn_type=attn_type, attn_kwargs=attn_kwargs)
self.convs.append(conv)
self.mlp = Sequential(
Linear(channels, channels // 2),
ReLU(),
Linear(channels // 2, channels // 4),
ReLU(),
Linear(channels // 4, 1),
)
self.redraw_projection = RedrawProjection(
self.convs,
redraw_interval=1000 if attn_type == 'performer' else None)
def forward(self, x, pe, edge_index, edge_attr, batch):
x_pe = self.pe_norm(pe)
x = torch.cat((self.node_emb(x.squeeze(-1)), self.pe_lin(x_pe)), 1)
edge_attr = self.edge_emb(edge_attr)
for conv in self.convs:
x = conv(x, edge_index, batch, edge_attr=edge_attr)
x = global_add_pool(x, batch)
return self.mlp(x)
class RedrawProjection:
def __init__(self, model: torch.nn.Module,
redraw_interval: Optional[int] = None):
self.model = model
self.redraw_interval = redraw_interval
self.num_last_redraw = 0
def redraw_projections(self):
if not self.model.training or self.redraw_interval is None:
return
if self.num_last_redraw >= self.redraw_interval:
fast_attentions = [
module for module in self.model.modules()
if isinstance(module, PerformerAttention)
]
for fast_attention in fast_attentions:
fast_attention.redraw_projection_matrix()
self.num_last_redraw = 0
return
self.num_last_redraw += 1
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
attn_kwargs = {'dropout': 0.5}
model = GPS(channels=64, pe_dim=8, num_layers=10, attn_type=args.attn_type,
attn_kwargs=attn_kwargs).to(device)
optimizer = torch.optim.Adam(model.parameters(), lr=0.001, weight_decay=1e-5)
scheduler = ReduceLROnPlateau(optimizer, mode='min', factor=0.5, patience=20,
min_lr=0.00001)
def train():
model.train()
total_loss = 0
for data in train_loader:
data = data.to(device)
optimizer.zero_grad()
model.redraw_projection.redraw_projections()
out = model(data.x, data.pe, data.edge_index, data.edge_attr,
data.batch)
loss = (out.squeeze() - data.y).abs().mean()
loss.backward()
total_loss += loss.item() * data.num_graphs
optimizer.step()
return total_loss / len(train_loader.dataset)
@torch.no_grad()
def test(loader):
model.eval()
total_error = 0
for data in loader:
data = data.to(device)
out = model(data.x, data.pe, data.edge_index, data.edge_attr,
data.batch)
total_error += (out.squeeze() - data.y).abs().sum().item()
return total_error / len(loader.dataset)
for epoch in range(1, 101):
loss = train()
val_mae = test(val_loader)
test_mae = test(test_loader)
scheduler.step(val_mae)
print(f'Epoch: {epoch:02d}, Loss: {loss:.4f}, Val: {val_mae:.4f}, '
f'Test: {test_mae:.4f}')