You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
Is this specific to blackjax?
Note that I am appending two groups to the InferenceData (prior and posterior_predictive)
It works fine with sample_numpyro_nuts using the same code exactly
Thank you!
Please provide a minimal, self-contained, and reproducible example.
pm.sampling_jax.sample_blackjax_nuts(
Please provide the full traceback.
Complete error traceback
Localcurrenttimeatstart : SunApr1717:57:2920221000010004Compiling...
Compilationtime=0:00:00.849628Sampling...
Samplingtime=0:00:04.327564Transformingvariables...
Transformationtime=0:00:57.827094100.00% [40000/4000000:03<00:00]
---------------------------------------------------------------------------ValueErrorTraceback (mostrecentcalllast)
InputIn [18], in<module>89withph_poisson:
90az.to_netcdf(idata,file_name)
--->92plots_func(idata)
94print(pm.str_for_model(ph_poisson,formatting='Latex'))
96t2=time.perf_counter()
InputIn [5], inplots_func(data)
21file_density=os.path.join(folders[1],'density_plots.png')
22plt.savefig(file_density ,dpi=300)
--->24az.plot_energy(data)
25file_energy=os.path.join(folders[1],'energy_plots.png')
26plt.savefig(file_energy ,dpi=300)
File/opt/homebrew/Caskroom/miniforge/base/envs/pymc-dev-py39/lib/python3.9/site-packages/arviz/plots/energyplot.py:100, inplot_energy(data, kind, bfmi, figsize, legend, fill_alpha, fill_color, bw, textsize, fill_kwargs, plot_kwargs, ax, backend, backend_kwargs, show)
9defplot_energy(
10data,
11kind=None,
(...)
24show=None,
25 ):
26"""Plot energy transition distribution and marginal energy distribution in HMC algorithms. 27 28 This may help to diagnose poor exploration by gradient-based algorithms like HMC or NUTS. (...) 98 99 """-->100energy=convert_to_dataset(data, group="sample_stats").energy.values102ifkind=="histogram":
103warnings.warn(
104"kind histogram will be deprecated in a future release. Use `hist` "105"or set rcParam `plot.density_kind` to `hist`",
106FutureWarning,
107 )
File/opt/homebrew/Caskroom/miniforge/base/envs/pymc-dev-py39/lib/python3.9/site-packages/arviz/data/converters.py:182, inconvert_to_dataset(obj, group, coords, dims)
180dataset=getattr(inference_data, group, None)
181ifdatasetisNone:
-->182raiseValueError(
183"Can not extract {group} from {obj}! See {filename} for other "184"conversion utilities.".format(group=group, obj=obj, filename=__file__)
185 )
186returndatasetValueError: Cannotextractsample_statsfromInferencedatawithgroups:
>posterior>posterior_predictive>log_likelihood>prior>observed_data! See/opt/homebrew/Caskroom/miniforge/base/envs/pymc-dev-py39/lib/python3.9/site-packages/arviz/data/converters.pyforotherconversionutilities.
Please provide any additional information below.
Versions and main components
Python implementation: CPython
Python version : 3.9.10
IPython version : 8.0.1
Compiler : Clang 11.1.0
OS : Darwin
Release : 21.4.0
Machine : arm64
Processor : arm
CPU cores : 10
Architecture: 64bit
Description of your problem
No stats saved in the InderenceData.
Is this specific to blackjax?
Note that I am appending two groups to the InferenceData (prior and posterior_predictive)
It works fine with sample_numpyro_nuts using the same code exactly
Thank you!
Please provide a minimal, self-contained, and reproducible example.
Please provide the full traceback.
Complete error traceback
Please provide any additional information below.
Versions and main components
Python implementation: CPython
Python version : 3.9.10
IPython version : 8.0.1
Compiler : Clang 11.1.0
OS : Darwin
Release : 21.4.0
Machine : arm64
Processor : arm
CPU cores : 10
Architecture: 64bit
csv : 1.0
xarray : 2022.3.0
sys : 3.9.10 | packaged by conda-forge | (main, Feb 1 2022, 21:27:43)
[Clang 11.1.0 ]
sklearn : 0.0
jax : 0.3.4
statsmodels: 0.13.2
platform : 1.0.8
blackjax : 0.4.0
seaborn : 0.11.2
numpy : 1.21.5
arviz : 0.12.0
aesara : 2.5.1
pandas : 1.4.1
jaxlib : 0.3.0
scipy : 1.7.3
matplotlib : 3.5.1
pymc : 4.0.0b6
The text was updated successfully, but these errors were encountered: