-
Notifications
You must be signed in to change notification settings - Fork 2
/
ilidriver.c
528 lines (470 loc) · 17.7 KB
/
ilidriver.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
/* SPI Master example
This example code is in the Public Domain (or CC0 licensed, at your option.)
Unless required by applicable law or agreed to in writing, this
software is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR
CONDITIONS OF ANY KIND, either express or implied.
*/
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <stdint.h>
#include "freertos/FreeRTOS.h"
#include "freertos/task.h"
#include "esp_system.h"
#include "driver/spi_master.h"
#include "soc/gpio_struct.h"
#include "driver/gpio.h"
#define TFT_CMD_SWRESET 0x01
/*
This code displays some fancy graphics on the 320x240 LCD on an ESP-WROVER_KIT board.
This example demonstrates the use of both spi_device_transmit as well as
spi_device_queue_trans/spi_device_get_trans_result and pre-transmit callbacks.
Some info about the ILI9341/ST7789V: It has an C/D line, which is connected to a GPIO here. It expects this
line to be low for a command and high for data. We use a pre-transmit callback here to control that
line: every transaction has as the user-definable argument the needed state of the D/C line and just
before the transaction is sent, the callback will set this line to the correct state.
*/
#define TDISPLAY
#ifdef TDISPLAY
#define PIN_NUM_MISO 17
#define PIN_NUM_MOSI 19
#define PIN_NUM_CLK 18
#define PIN_NUM_CS 5
#define PIN_NUM_DC 16
#define PIN_NUM_RST 20
#define LINE_LEN 136
#else
#define PIN_NUM_MISO 12
#define PIN_NUM_MOSI 23
#define PIN_NUM_CLK 18
#define PIN_NUM_CS 27
#define PIN_NUM_DC 32
#define PIN_NUM_RST 05
#define LINE_LEN 240
#endif
#define PIN_NUM_BCKL 4
//To speed up transfers, every SPI transfer sends a bunch of lines. This define specifies how many. More means more memory use,
//but less overhead for setting up / finishing transfers. Make sure 240 is dividable by this.
#define PARALLEL_LINES 20 // must divide into 240 and 320
static spi_device_handle_t ili_spi;
static uint16_t *dma_lines[2];
static uint8_t backlight = 0;
/*
The LCD needs a bunch of command/argument values to be initialized. They are stored in this struct.
aa*/
typedef struct {
uint8_t cmd;
uint8_t data[16];
uint8_t databytes; //No of data in data; bit 7 = delay after set; 0xFF = end of cmds.
} lcd_init_cmd_t;
#if 0
DRAM_ATTR static const lcd_init_cmd_t ili_init_cmds[]={
/* Power contorl B, power control = 0, DC_ENA = 1 */
{0xCF, {0x00, 0x83, 0X30}, 3},
/* Power on sequence control,
* cp1 keeps 1 frame, 1st frame enable
* vcl = 0, ddvdh=3, vgh=1, vgl=2
* DDVDH_ENH=1
*/
{0xED, {0x64, 0x03, 0X12, 0X81}, 4},
/* Driver timing control A,
* non-overlap=default +1
* EQ=default - 1, CR=default
* pre-charge=default - 1
*/
{0xE8, {0x85, 0x01, 0x79}, 3},
/* Power control A, Vcore=1.6V, DDVDH=5.6V */
{0xCB, {0x39, 0x2C, 0x00, 0x34, 0x02}, 5},
/* Pump ratio control, DDVDH=2xVCl */
{0xF7, {0x20}, 1},
/* Driver timing control, all=0 unit */
{0xEA, {0x00, 0x00}, 2},
/* Power control 1, GVDD=4.75V */
{0xC0, {0x26}, 1},
/* Power control 2, DDVDH=VCl*2, VGH=VCl*7, VGL=-VCl*3 */
{0xC1, {0x11}, 1},
/* VCOM control 1, VCOMH=4.025V, VCOML=-0.950V */
{0xC5, {0x35, 0x3E}, 2},
/* VCOM control 2, VCOMH=VMH-2, VCOML=VML-2 */
{0xC7, {0xBE}, 1},
/* Memory access contorl, MX=MY=0, MV=1, ML=0, BGR=1, MH=0 */
{0x36, {0x28}, 1},
/* Pixel format, 16bits/pixel for RGB/MCU interface */
{0x3A, {0x55}, 1},
/* Frame rate control, f=fosc, 70Hz fps */
{0xB1, {0x00, 0x1B}, 2},
/* Enable 3G, disabled */
{0xF2, {0x08}, 1},
/* Gamma set, curve 1 */
{0x26, {0x01}, 1},
/* Positive gamma correction */
{0xE0, {0x1F, 0x1A, 0x18, 0x0A, 0x0F, 0x06, 0x45, 0X87, 0x32, 0x0A, 0x07, 0x02, 0x07, 0x05, 0x00}, 15},
/* Negative gamma correction */
{0XE1, {0x00, 0x25, 0x27, 0x05, 0x10, 0x09, 0x3A, 0x78, 0x4D, 0x05, 0x18, 0x0D, 0x38, 0x3A, 0x1F}, 15},
/* Column address set, SC=0, EC=0xEF */
{0x2A, {0x00, 0x00, 0x00, 0xEF}, 4},
/* Page address set, SP=0, EP=0x013F */
{0x2B, {0x00, 0x00, 0x01, 0x3f}, 4},
/* Memory write */
{0x2C, {0}, 0},
/* Entry mode set, Low vol detect disabled, normal display */
{0xB7, {0x07}, 1},
/* Display function control */
{0xB6, {0x0A, 0x82, 0x27, 0x00}, 4},
/* Sleep out */
{0x11, {0}, 0x80},
/* Display on */
{0x29, {0}, 0x80},
{0, {0}, 0xff},
};
#elif 1
DRAM_ATTR static const lcd_init_cmd_t ili_init_cmds[]={
// {0x01, {0}, 0}, // software reset
{0xCB, {0x39, 0x2C, 0x00, 0x34, 0x02}, 5},
{0xCF, {0x00, 0X83, 0X30}, 3},
// {0xEF, {0x03, 0x80, 0x02}, 3},
{0xE8, {0x84, 0x11, 0x7a}, 3},
{0xEA, {0x00, 0x00}, 2},
{0xED, {0x64, 0x03, 0X12, 0X81}, 4},
{0xF7, {0x30}, 1},
{0xC0, {0x29}, 1}, //Power control VRH[5:0]
{0xC1, {0x00}, 1}, //Power control SAP[2:0];BT[3:0]
{0xC5, {0x31, 0x08}, 2}, //VCM control
{0xC7, {0xC0}, 1}, //VCM control2
#ifdef TDISPLAY
{0x36, {0xC8}, 1},
{0x21, {0}, 0}, // invert on
#else
{0x36, {0x48}, 1},
{0x20, {0}, 0}, // invert off
#endif
{0x3A, {0x55}, 1}, // *** INTERFACE PIXEL FORMAT: 0x66 -> 18 bit; 0x55 -> 16 bit
{0xB1, {0x00, 0x1B}, 2},
{0xB6, {0x08, 0x82, 0x27, 0x00}, 4}, // Display Function Control
// {0x30, {0x00, 0x00, 0x01, 0x3F}, 4},
{0xF2, {0x02}, 1}, // 3Gamma Function: Disable (0x02), Enable (0x03)
{0xE0, {0x1F, 0x1A, 0x18, 0x0A, 0x0F, 0x06, 0x45, 0X87, 0x32, 0x0A, 0x07, 0x02, 0x07, 0x05, 0x00}, 15},
{0xE1, {0x00, 0x25, 0x27, 0x05, 0x10, 0x09, 0x3A, 0x78, 0x4D, 0x05, 0x18, 0x0D, 0x38, 0x3A, 0x1F}, 15},
// {0x26, {0x08}, 1}, //Gamma curve selected (0x01, 0x02, 0x04, 0x08)
// {0xE0, { 0x0F, 0x31, 0x2B, 0x0C, 0x0E, 0x08, 0x4E, 0xF1, 0x37, 0x07, 0x10, 0x03, 0x0E, 0x09, 0x00}, 15}, //Positive Gamma Correction
// {0xE1, { 0x00, 0x0E, 0x14, 0x03, 0x11, 0x07, 0x31, 0xC1, 0x48, 0x08, 0x0F, 0x0C, 0x31, 0x36, 0x0F}, 15},
{0x11, {0}, 0x80}, // Sleep out
{0x29, {0}, 0x80}, // Display on
{0, {0}, 0xff}
};
#else
DRAM_ATTR static const lcd_init_cmd_t ili_init_cmds[]={
// {0x01, {0}, 0}, // software reset
{0x20, {0}, 0}, // invert off
{0xCB, {0x39, 0x2C, 0x00, 0x34, 0x02}, 5},
{0xCF, {0x00, 0xC1, 0x30}, 3},
{0xEF, {0x03, 0x80, 0x02}, 3},
{0xE8, {0x85, 0x00, 0x78}, 3},
{0xEA, {0x00, 0x00}, 2},
{0xED, {0x64, 0x03, 0x12, 0x81}, 4},
{0xF7, {0x20}, 1},
{0xC0, {0x23}, 1}, //Power control VRH[5:0]
{0xC1, {0x10}, 1}, //Power control SAP[2:0];BT[3:0]
{0xC5, {0x3e, 0x28}, 2}, //VCM control
{0xC7, {0x86}, 1}, //VCM control2
#ifdef TDISPLAY
{0x36, {0x28}, 1},
#else
{0x36, {0x48}, 1},
#endif
{0x3A, {0x55}, 1}, // *** INTERFACE PIXEL FORMAT: 0x66 -> 18 bit; 0x55 -> 16 bit
{0xB1, {0x03, 0x1f}, 2},
{0xB6, {0x08, 0x82, 0x27, 0x00}, 4}, // Display Function Control
// {0x30, {0x00, 0x00, 0x01, 0x3F}, 4},
// {0xF2, {0x00}, 1}, // 3Gamma Function: Disable (0x02), Enable (0x03)
// {0x26, {0x01}, 1}, //Gamma curve selected (0x01, 0x02, 0x04, 0x08)
// {0xE0, { 0x0F, 0x31, 0x2B, 0x0C, 0x0E, 0x08, 0x4E, 0xF1, 0x37, 0x07, 0x10, 0x03, 0x0E, 0x09, 0x00}, 15}, //Positive Gamma Correction
// {0xE1, { 0x00, 0x0E, 0x14, 0x03, 0x11, 0x07, 0x31, 0xC1, 0x48, 0x08, 0x0F, 0x0C, 0x31, 0x36, 0x0F}, 15},
{0x11, {0}, 0x80}, // Sleep out
{0x29, {0}, 0x80}, // Display on
{0, {0}, 0xff}
};
#endif
/* Send a command to the LCD. Uses spi_device_polling_transmit, which waits
* until the transfer is complete.
*
* Since command transactions are usually small, they are handled in polling
* mode for higher speed. The overhead of interrupt transactions is more than
* just waiting for the transaction to complete.
*/
static void lcd_cmd(const uint8_t cmd)
{
esp_err_t ret;
spi_transaction_t t;
memset(&t, 0, sizeof(t)); //Zero out the transaction
t.length=8; //Command is 8 bits
t.tx_buffer=&cmd; //The data is the cmd itself
t.user=(void*)0; //D/C needs to be set to 0
ret=spi_device_polling_transmit(ili_spi, &t); //Transmit!
assert(ret==ESP_OK); //Should have had no issues.
}
/* Send data to the LCD. Uses spi_device_polling_transmit, which waits until the
* transfer is complete.
*
* Since data transactions are usually small, they are handled in polling
* mode for higher speed. The overhead of interrupt transactions is more than
* just waiting for the transaction to complete.
*/
static void lcd_data(const uint8_t *data, int len)
{
esp_err_t ret;
spi_transaction_t t;
if (len==0) return; //no need to send anything
memset(&t, 0, sizeof(t)); //Zero out the transaction
t.length=len*8; //Len is in bytes, transaction length is in bits.
t.tx_buffer=data; //Data
t.user=(void*)1; //D/C needs to be set to 1
ret=spi_device_polling_transmit(ili_spi, &t); //Transmit!
assert(ret==ESP_OK); //Should have had no issues.
}
//This function is called (in irq context!) just before a transmission starts. It will
//set the D/C line to the value indicated in the user field.
static void lcd_spi_pre_transfer_callback(spi_transaction_t *t)
{
int dc=(int)t->user;
gpio_set_level(PIN_NUM_DC, dc);
}
static uint32_t lcd_get_id()
{
//get_id cmd
lcd_cmd(0x04);
spi_transaction_t t;
memset(&t, 0, sizeof(t));
t.length=8*3;
t.flags = SPI_TRANS_USE_RXDATA;
t.user = (void*)1;
esp_err_t ret = spi_device_polling_transmit(ili_spi, &t);
assert( ret == ESP_OK );
uint32_t id;
memcpy(&id, t.rx_data, 4);
return id;
}
//Initialize the display
static void lcd_init()
{
int cmd=0;
const lcd_init_cmd_t* lcd_init_cmds;
//Reset the display
gpio_set_level(PIN_NUM_RST, 0);
vTaskDelay(50 / portTICK_RATE_MS);
gpio_set_level(PIN_NUM_RST, 1);
vTaskDelay(50 / portTICK_RATE_MS);
lcd_cmd(TFT_CMD_SWRESET);
vTaskDelay(10 / portTICK_RATE_MS);
lcd_cmd(TFT_CMD_SWRESET);
//detect LCD type
uint32_t lcd_id = lcd_get_id(ili_spi);
int lcd_detected_type = 0;
int lcd_type;
lcd_init_cmds = ili_init_cmds;
//Send all the commands
while (lcd_init_cmds[cmd].databytes!=0xff) {
lcd_cmd(lcd_init_cmds[cmd].cmd);
lcd_data(lcd_init_cmds[cmd].data, lcd_init_cmds[cmd].databytes&0x1F);
if (lcd_init_cmds[cmd].databytes&0x80) {
vTaskDelay(100 / portTICK_RATE_MS);
}
cmd++;
}
}
static void send_line_finish(spi_device_handle_t spi)
{
spi_transaction_t *rtrans;
esp_err_t ret;
//Wait for all 6 transactions to be done and get back the results.
for (int x=0; x<6; x++) {
ret=spi_device_get_trans_result(spi, &rtrans, portMAX_DELAY);
assert(ret==ESP_OK);
//We could inspect rtrans now if we received any info back. The LCD is treated as write-only, though.
}
}
/* To send a set of lines we have to send a command, 2 data bytes, another command, 2 more data bytes and another command
* before sending the line data itself; a total of 6 transactions. (We can't put all of this in just one transaction
* because the D/C line needs to be toggled in the middle.)
* This routine queues these commands up as interrupt transactions so they get
* sent faster (compared to calling spi_device_transmit several times), and at
* the mean while the lines for next transactions can get calculated.
*/
static void send_lines(int ypos, int line)
{
esp_err_t ret;
int x;
//Transaction descriptors. Declared static so they're not allocated on the stack; we need this memory even when this
//function is finished because the SPI driver needs access to it even while we're already calculating the next line.
static spi_transaction_t trans[6];
//In theory, it's better to initialize trans and data only once and hang on to the initialized
//variables. We allocate them on the stack, so we need to re-init them each call.
for (x=0; x<6; x++) {
memset(&trans[x], 0, sizeof(spi_transaction_t));
if ((x&1)==0) {
//Even transfers are commands
trans[x].length=8;
trans[x].user=(void*)0;
} else {
//Odd transfers are data
trans[x].length=8*4;
trans[x].user=(void*)1;
}
trans[x].flags=SPI_TRANS_USE_TXDATA;
}
#ifdef TDISPLAY
const int sx = 52, sy = 41;
#else
const int sx = 0, sy = 1;
#endif
ypos += sy;
trans[0].tx_data[0]=0x2A; //Column Address Set
trans[1].tx_data[0]=0; //Start Col High
trans[1].tx_data[1]=sx; //Start Col Low
trans[1].tx_data[2]=(sx+LINE_LEN-1)>>8; //End Col High
trans[1].tx_data[3]=(sx+LINE_LEN-1)&0xff; //End Col Low
trans[2].tx_data[0]=0x2B; //Page address set
trans[3].tx_data[0]=ypos>>8; //Start page high
trans[3].tx_data[1]=ypos&0xff; //start page low
trans[3].tx_data[2]=(ypos+PARALLEL_LINES-1)>>8; //end page high
trans[3].tx_data[3]=(ypos+PARALLEL_LINES-1)&0xff; //end page low
trans[4].tx_data[0]=0x2C; //memory write
trans[5].tx_buffer=dma_lines[line]; //finally send the line data
trans[5].length=LINE_LEN*2*8*PARALLEL_LINES; //Data length, in bits
trans[5].flags=0; //undo SPI_TRANS_USE_TXDATA flag
//Queue all transactions.
for (x=0; x<6; x++) {
//printf("ok %d %d\n", x, trans[x].length);
ret=spi_device_queue_trans(ili_spi, &trans[x], portMAX_DELAY);
assert(ret==ESP_OK);
}
//When we are here, the SPI driver is busy (in the background) getting the transactions sent. That happens
//mostly using DMA, so the CPU doesn't have much to do here. We're not going to wait for the transaction to
//finish because we may as well spend the time calculating the next line. When that is done, we can call
//send_line_finish, which will wait for the transfers to be done and check their status.
}
// This is the function which will be called from Python as test.add_ints(a, b).
static void lcd_setup() {
esp_err_t ret;
spi_bus_config_t buscfg={
.miso_io_num=PIN_NUM_MISO,
.mosi_io_num=PIN_NUM_MOSI,
.sclk_io_num=PIN_NUM_CLK,
.quadwp_io_num=-1,
.quadhd_io_num=-1,
.max_transfer_sz=PARALLEL_LINES*LINE_LEN*2+8
};
spi_device_interface_config_t devcfg={
.clock_speed_hz=20*1000*1000, //Clock out at 10 MHz
.mode=0, //SPI mode 0
.spics_io_num=PIN_NUM_CS, //CS pin
.queue_size=5, //We want to be able to queue 7 transactions at a time
.pre_cb=lcd_spi_pre_transfer_callback, //Specify pre-transfer callback to handle D/C line
};
//Initialize the SPI bus
ret=spi_bus_initialize(HSPI_HOST, &buscfg, 1);
ESP_ERROR_CHECK(ret);
//Attach the LCD to the SPI bus
ret=spi_bus_add_device(HSPI_HOST, &devcfg, &ili_spi);
ESP_ERROR_CHECK(ret);
//Allocate memory for the pixel buffers
for (int i=0; i<2; i++) {
dma_lines[i]=heap_caps_malloc(LINE_LEN*PARALLEL_LINES*sizeof(uint16_t), MALLOC_CAP_DMA);
memset(dma_lines[i], 0, LINE_LEN*PARALLEL_LINES*sizeof(uint16_t));
}
//Initialize non-SPI GPIOs
gpio_set_direction(PIN_NUM_DC, GPIO_MODE_OUTPUT);
gpio_set_direction(PIN_NUM_RST, GPIO_MODE_OUTPUT);
gpio_set_direction(PIN_NUM_BCKL, GPIO_MODE_OUTPUT);
///Disable backlight
gpio_set_level(PIN_NUM_BCKL, 0);
}
static uint8_t minc(int32_t c) {
if(c > 255)
return 255;
return c;
}
static uint8_t nn(int32_t c)
{
if (c<0)
return 0;
return c;
}
void ili_refresh(int contrast, int hue, int bl, int width, int height, char *data)
{
static int setup, initialized;
if(!setup) {
lcd_setup();
setup = 1;
}
if(bl != backlight) {
backlight = !!bl;
///Enable backlight
gpio_set_level(PIN_NUM_BCKL, backlight);
if(!backlight) {
lcd_cmd(TFT_CMD_SWRESET);
initialized = 0;
}
}
if(!backlight) {
initialized = 0;
return;
}
if(!initialized) {
lcd_init();
initialized = 1;
}
#if 1
lcd_cmd(0x36);
uint8_t d[1] = {0xC8};
lcd_data(d, 1);
#endif
// rebuild palette if needed
static int last_contrast = -1, last_hue = -1;
static uint16_t palette[256];
contrast = 100;
if(contrast != last_contrast || hue != last_hue) {
last_contrast = contrast;
last_hue = hue;
int32_t c = contrast, h = hue;
int32_t r, g, b;
if(h < 85) {
r = 85;
g = nn(2*h - 85);
b = nn(85 - 2*h);
} else if(h < 170) {
r = nn(85 - 2*(h-85));
g = 85;
b = nn(2*(h-85) - 85);
} else {
r = nn(2*(h-170) - 85);
g = nn(85 - 2*(h-170));
b = 85;
}
for(uint32_t i=0; i<256; i++) {
uint32_t red = minc(i*c*r/8500);
uint32_t green = minc(i*c*g/8500);
uint32_t blue = minc(i*c*b/8500);
uint16_t c = ((red&0xF8)<<8) | ((green&0xFC) << 3) | ((blue&0xF8)>>3);
uint8_t *v = (uint8_t*)&c;
palette[i] = (v[0]<<8) | v[1];
}
}
//spi_device_select(ili_spi, 0);
// put input data into dma buffer decoding palette
int yc = 0;
static int curline;
for(int y=0; y<height; y++) {
uint16_t *pl = &dma_lines[curline][yc*LINE_LEN];
for(int x=0; x<width; x++) {
uint8_t c = data[y*width+x];
*pl++ = palette[c];
}
yc++;
if(yc == PARALLEL_LINES || y == height-1) {
send_lines(y-PARALLEL_LINES, curline);
curline = !curline;
yc = 0;
}
}
}