-
-
Notifications
You must be signed in to change notification settings - Fork 372
/
strategies.py
216 lines (166 loc) · 6.03 KB
/
strategies.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
# SPDX-License-Identifier: MIT
"""
Testing strategies for Hypothesis-based tests.
"""
import functools
import keyword
import string
from collections import OrderedDict
from hypothesis import strategies as st
import attr
from .utils import make_class
optional_bool = st.one_of(st.none(), st.booleans())
def gen_attr_names():
"""
Generate names for attributes, 'a'...'z', then 'aa'...'zz'.
~702 different attribute names should be enough in practice.
Some short strings (such as 'as') are keywords, so we skip them.
"""
lc = string.ascii_lowercase
yield from lc
for outer in lc:
for inner in lc:
res = outer + inner
if keyword.iskeyword(res):
continue
yield outer + inner
def maybe_underscore_prefix(source):
"""
A generator to sometimes prepend an underscore.
"""
to_underscore = False
for val in source:
yield val if not to_underscore else "_" + val
to_underscore = not to_underscore
@st.composite
def _create_hyp_nested_strategy(draw, simple_class_strategy):
"""
Create a recursive attrs class.
Given a strategy for building (simpler) classes, create and return
a strategy for building classes that have as an attribute: either just
the simpler class, a list of simpler classes, a tuple of simpler classes,
an ordered dict or a dict mapping the string "cls" to a simpler class.
"""
cls = draw(simple_class_strategy)
factories = [
cls,
lambda: [cls()],
lambda: (cls(),),
lambda: {"cls": cls()},
lambda: OrderedDict([("cls", cls())]),
]
factory = draw(st.sampled_from(factories))
attrs = [*draw(list_of_attrs), attr.ib(default=attr.Factory(factory))]
return make_class("HypClass", dict(zip(gen_attr_names(), attrs)))
bare_attrs = st.builds(attr.ib, default=st.none())
int_attrs = st.integers().map(lambda i: attr.ib(default=i))
str_attrs = st.text().map(lambda s: attr.ib(default=s))
float_attrs = st.floats(allow_nan=False).map(lambda f: attr.ib(default=f))
dict_attrs = st.dictionaries(keys=st.text(), values=st.integers()).map(
lambda d: attr.ib(default=d)
)
simple_attrs_without_metadata = (
bare_attrs | int_attrs | str_attrs | float_attrs | dict_attrs
)
@st.composite
def simple_attrs_with_metadata(draw):
"""
Create a simple attribute with arbitrary metadata.
"""
c_attr = draw(simple_attrs)
keys = st.booleans() | st.binary() | st.integers() | st.text()
vals = st.booleans() | st.binary() | st.integers() | st.text()
metadata = draw(
st.dictionaries(keys=keys, values=vals, min_size=1, max_size=3)
)
return attr.ib(
default=c_attr._default,
validator=c_attr._validator,
repr=c_attr.repr,
eq=c_attr.eq,
order=c_attr.order,
hash=c_attr.hash,
init=c_attr.init,
metadata=metadata,
type=None,
converter=c_attr.converter,
)
simple_attrs = simple_attrs_without_metadata | simple_attrs_with_metadata()
# Python functions support up to 255 arguments.
list_of_attrs = st.lists(simple_attrs, max_size=3)
@st.composite
def simple_classes(
draw,
slots=None,
frozen=None,
weakref_slot=None,
private_attrs=None,
cached_property=None,
):
"""
A strategy that generates classes with default non-attr attributes.
For example, this strategy might generate a class such as:
@attr.s(slots=True, frozen=True, weakref_slot=True)
class HypClass:
a = attr.ib(default=1)
_b = attr.ib(default=None)
c = attr.ib(default='text')
_d = attr.ib(default=1.0)
c = attr.ib(default={'t': 1})
By default, all combinations of slots, frozen, and weakref_slot classes
will be generated. If `slots=True` is passed in, only slotted classes will
be generated, and if `slots=False` is passed in, no slotted classes will be
generated. The same applies to `frozen` and `weakref_slot`.
By default, some attributes will be private (those prefixed with an
underscore). If `private_attrs=True` is passed in, all attributes will be
private, and if `private_attrs=False`, no attributes will be private.
"""
attrs = draw(list_of_attrs)
frozen_flag = draw(st.booleans())
slots_flag = draw(st.booleans())
weakref_flag = draw(st.booleans())
if private_attrs is None:
attr_names = maybe_underscore_prefix(gen_attr_names())
elif private_attrs is True:
attr_names = ("_" + n for n in gen_attr_names())
elif private_attrs is False:
attr_names = gen_attr_names()
cls_dict = dict(zip(attr_names, attrs))
pre_init_flag = draw(st.booleans())
post_init_flag = draw(st.booleans())
init_flag = draw(st.booleans())
cached_property_flag = draw(st.booleans())
if pre_init_flag:
def pre_init(self):
pass
cls_dict["__attrs_pre_init__"] = pre_init
if post_init_flag:
def post_init(self):
pass
cls_dict["__attrs_post_init__"] = post_init
if not init_flag:
def init(self, *args, **kwargs):
self.__attrs_init__(*args, **kwargs)
cls_dict["__init__"] = init
bases = (object,)
if cached_property or (cached_property is None and cached_property_flag):
class BaseWithCachedProperty:
@functools.cached_property
def _cached_property(self) -> int:
return 1
bases = (BaseWithCachedProperty,)
return make_class(
"HypClass",
cls_dict,
bases=bases,
slots=slots_flag if slots is None else slots,
frozen=frozen_flag if frozen is None else frozen,
weakref_slot=weakref_flag if weakref_slot is None else weakref_slot,
init=init_flag,
)
# st.recursive works by taking a base strategy (in this case, simple_classes)
# and a special function. This function receives a strategy, and returns
# another strategy (building on top of the base strategy).
nested_classes = st.recursive(
simple_classes(), _create_hyp_nested_strategy, max_leaves=3
)