10
10
.. testsetup ::
11
11
12
12
from itertools import *
13
+ import collections
14
+ import math
15
+ import operator
16
+ import random
13
17
14
18
--------------
15
19
@@ -133,10 +137,9 @@ loops that truncate the stream.
133
137
There are a number of uses for the *func * argument. It can be set to
134
138
:func: `min ` for a running minimum, :func: `max ` for a running maximum, or
135
139
:func: `operator.mul ` for a running product. Amortization tables can be
136
- built by accumulating interest and applying payments. First-order
137
- `recurrence relations <https://en.wikipedia.org/wiki/Recurrence_relation >`_
138
- can be modeled by supplying the initial value in the iterable and using only
139
- the accumulated total in *func * argument::
140
+ built by accumulating interest and applying payments:
141
+
142
+ .. doctest ::
140
143
141
144
>>> data = [3 , 4 , 6 , 2 , 1 , 9 , 0 , 7 , 5 , 8 ]
142
145
>>> list (accumulate(data, operator.mul)) # running product
@@ -149,17 +152,6 @@ loops that truncate the stream.
149
152
>>> list (accumulate(cashflows, lambda bal , pmt : bal* 1.05 + pmt))
150
153
[1000, 960.0, 918.0, 873.9000000000001, 827.5950000000001]
151
154
152
- # Chaotic recurrence relation https://en.wikipedia.org/wiki/Logistic_map
153
- >>> logistic_map = lambda x, _: r * x * (1 - x)
154
- >>> r = 3.8
155
- >>> x0 = 0.4
156
- >>> inputs = repeat(x0, 36) # only the initial value is used
157
- >>> [format(x, '.2f') for x in accumulate(inputs, logistic_map)]
158
- ['0.40', '0.91', '0.30', '0.81', '0.60', '0.92', '0.29', '0.79', '0.63',
159
- '0.88', '0.39', '0.90', '0.33', '0.84', '0.52', '0.95', '0.18', '0.57',
160
- '0.93', '0.25', '0.71', '0.79', '0.63', '0.88', '0.39', '0.91', '0.32',
161
- '0.83', '0.54', '0.95', '0.20', '0.60', '0.91', '0.30', '0.80', '0.60']
162
-
163
155
See :func: `functools.reduce ` for a similar function that returns only the
164
156
final accumulated value.
165
157
@@ -241,10 +233,10 @@ loops that truncate the stream.
241
233
242
234
The combination tuples are emitted in lexicographic ordering according to
243
235
the order of the input *iterable *. So, if the input *iterable * is sorted,
244
- the combination tuples will be produced in sorted order.
236
+ the output tuples will be produced in sorted order.
245
237
246
238
Elements are treated as unique based on their position, not on their
247
- value. So if the input elements are unique, there will be no repeat
239
+ value. So if the input elements are unique, there will be no repeated
248
240
values in each combination.
249
241
250
242
Roughly equivalent to::
@@ -290,7 +282,7 @@ loops that truncate the stream.
290
282
291
283
The combination tuples are emitted in lexicographic ordering according to
292
284
the order of the input *iterable *. So, if the input *iterable * is sorted,
293
- the combination tuples will be produced in sorted order.
285
+ the output tuples will be produced in sorted order.
294
286
295
287
Elements are treated as unique based on their position, not on their
296
288
value. So if the input elements are unique, the generated combinations
@@ -449,21 +441,25 @@ loops that truncate the stream.
449
441
class groupby:
450
442
# [k for k, g in groupby('AAAABBBCCDAABBB')] --> A B C D A B
451
443
# [list(g) for k, g in groupby('AAAABBBCCD')] --> AAAA BBB CC D
444
+
452
445
def __init__(self, iterable, key=None):
453
446
if key is None:
454
447
key = lambda x: x
455
448
self.keyfunc = key
456
449
self.it = iter(iterable)
457
450
self.tgtkey = self.currkey = self.currvalue = object()
451
+
458
452
def __iter__(self):
459
453
return self
454
+
460
455
def __next__(self):
461
456
self.id = object()
462
457
while self.currkey == self.tgtkey:
463
458
self.currvalue = next(self.it) # Exit on StopIteration
464
459
self.currkey = self.keyfunc(self.currvalue)
465
460
self.tgtkey = self.currkey
466
461
return (self.currkey, self._grouper(self.tgtkey, self.id))
462
+
467
463
def _grouper(self, tgtkey, id):
468
464
while self.id is id and self.currkey == tgtkey:
469
465
yield self.currvalue
@@ -482,10 +478,17 @@ loops that truncate the stream.
482
478
Afterward, elements are returned consecutively unless *step * is set higher than
483
479
one which results in items being skipped. If *stop * is ``None ``, then iteration
484
480
continues until the iterator is exhausted, if at all; otherwise, it stops at the
485
- specified position. Unlike regular slicing, :func: `islice ` does not support
486
- negative values for *start *, *stop *, or *step *. Can be used to extract related
487
- fields from data where the internal structure has been flattened (for example, a
488
- multi-line report may list a name field on every third line). Roughly equivalent to::
481
+ specified position.
482
+
483
+ If *start * is ``None ``, then iteration starts at zero. If *step * is ``None ``,
484
+ then the step defaults to one.
485
+
486
+ Unlike regular slicing, :func: `islice ` does not support negative values for
487
+ *start *, *stop *, or *step *. Can be used to extract related fields from
488
+ data where the internal structure has been flattened (for example, a
489
+ multi-line report may list a name field on every third line).
490
+
491
+ Roughly equivalent to::
489
492
490
493
def islice(iterable, *args):
491
494
# islice('ABCDEFG', 2) --> A B
@@ -512,8 +515,6 @@ loops that truncate the stream.
512
515
for i, element in zip(range(i + 1, stop), iterable):
513
516
pass
514
517
515
- If *start * is ``None ``, then iteration starts at zero. If *step * is ``None ``,
516
- then the step defaults to one.
517
518
518
519
.. function :: pairwise(iterable)
519
520
@@ -542,13 +543,13 @@ loops that truncate the stream.
542
543
of the *iterable * and all possible full-length permutations
543
544
are generated.
544
545
545
- The permutation tuples are emitted in lexicographic ordering according to
546
+ The permutation tuples are emitted in lexicographic order according to
546
547
the order of the input *iterable *. So, if the input *iterable * is sorted,
547
- the combination tuples will be produced in sorted order.
548
+ the output tuples will be produced in sorted order.
548
549
549
550
Elements are treated as unique based on their position, not on their
550
- value. So if the input elements are unique, there will be no repeat
551
- values in each permutation.
551
+ value. So if the input elements are unique, there will be no repeated
552
+ values within a permutation.
552
553
553
554
Roughly equivalent to::
554
555
@@ -628,9 +629,7 @@ loops that truncate the stream.
628
629
.. function :: repeat(object[, times])
629
630
630
631
Make an iterator that returns *object * over and over again. Runs indefinitely
631
- unless the *times * argument is specified. Used as argument to :func: `map ` for
632
- invariant parameters to the called function. Also used with :func: `zip ` to
633
- create an invariant part of a tuple record.
632
+ unless the *times * argument is specified.
634
633
635
634
Roughly equivalent to::
636
635
@@ -644,7 +643,9 @@ loops that truncate the stream.
644
643
yield object
645
644
646
645
A common use for *repeat * is to supply a stream of constant values to *map *
647
- or *zip *::
646
+ or *zip *:
647
+
648
+ .. doctest ::
648
649
649
650
>>> list (map (pow , range (10 ), repeat(2 )))
650
651
[0, 1, 4, 9, 16, 25, 36, 49, 64, 81]
@@ -653,9 +654,12 @@ loops that truncate the stream.
653
654
654
655
Make an iterator that computes the function using arguments obtained from
655
656
the iterable. Used instead of :func: `map ` when argument parameters are already
656
- grouped in tuples from a single iterable (the data has been "pre-zipped"). The
657
- difference between :func: `map ` and :func: `starmap ` parallels the distinction
658
- between ``function(a,b) `` and ``function(*c) ``. Roughly equivalent to::
657
+ grouped in tuples from a single iterable (when the data has been
658
+ "pre-zipped").
659
+
660
+ The difference between :func: `map ` and :func: `starmap ` parallels the
661
+ distinction between ``function(a,b) `` and ``function(*c) ``. Roughly
662
+ equivalent to::
659
663
660
664
def starmap(function, iterable):
661
665
# starmap(pow, [(2,5), (3,2), (10,3)]) --> 32 9 1000
@@ -683,9 +687,7 @@ loops that truncate the stream.
683
687
684
688
The following Python code helps explain what *tee * does (although the actual
685
689
implementation is more complex and uses only a single underlying
686
- :abbr: `FIFO ( first-in, first-out ) ` queue).
687
-
688
- Roughly equivalent to::
690
+ :abbr: `FIFO ( first-in, first-out ) ` queue)::
689
691
690
692
def tee(iterable, n=2):
691
693
it = iter(iterable)
@@ -702,7 +704,7 @@ loops that truncate the stream.
702
704
yield mydeque.popleft()
703
705
return tuple(gen(d) for d in deques)
704
706
705
- Once :func: `tee ` has made a split , the original *iterable * should not be
707
+ Once a :func: `tee ` has been created , the original *iterable * should not be
706
708
used anywhere else; otherwise, the *iterable * could get advanced without
707
709
the tee objects being informed.
708
710
@@ -756,14 +758,28 @@ Itertools Recipes
756
758
This section shows recipes for creating an extended toolset using the existing
757
759
itertools as building blocks.
758
760
761
+ The primary purpose of the itertools recipes is educational. The recipes show
762
+ various ways of thinking about individual tools — for example, that
763
+ ``chain.from_iterable `` is related to the concept of flattening. The recipes
764
+ also give ideas about ways that the tools can be combined — for example, how
765
+ `compress() ` and `range() ` can work together. The recipes also show patterns
766
+ for using itertools with the :mod: `operator ` and :mod: `collections ` modules as
767
+ well as with the built-in itertools such as ``map() ``, ``filter() ``,
768
+ ``reversed() ``, and ``enumerate() ``.
769
+
770
+ A secondary purpose of the recipes is to serve as an incubator. The
771
+ ``accumulate() ``, ``compress() ``, and ``pairwise() `` itertools started out as
772
+ recipes. Currently, the ``iter_index() `` recipe is being tested to see
773
+ whether it proves its worth.
774
+
759
775
Substantially all of these recipes and many, many others can be installed from
760
776
the `more-itertools project <https://pypi.org/project/more-itertools/ >`_ found
761
777
on the Python Package Index::
762
778
763
779
python -m pip install more-itertools
764
780
765
- The extended tools offer the same high performance as the underlying toolset.
766
- The superior memory performance is kept by processing elements one at a time
781
+ Many of the recipes offer the same high performance as the underlying toolset.
782
+ Superior memory performance is kept by processing elements one at a time
767
783
rather than bringing the whole iterable into memory all at once. Code volume is
768
784
kept small by linking the tools together in a functional style which helps
769
785
eliminate temporary variables. High speed is retained by preferring
@@ -848,15 +864,25 @@ which incur interpreter overhead.
848
864
for k in range(len(roots) + 1)
849
865
]
850
866
851
- def iter_index(seq , value, start=0):
852
- "Return indices where a value occurs in a sequence."
867
+ def iter_index(iterable , value, start=0):
868
+ "Return indices where a value occurs in a sequence or iterable ."
853
869
# iter_index('AABCADEAF', 'A') --> 0 1 4 7
854
- i = start - 1
855
870
try:
856
- while True:
857
- yield (i := seq.index(value, i+1))
858
- except ValueError:
859
- pass
871
+ seq_index = iterable.index
872
+ except AttributeError:
873
+ # Slow path for general iterables
874
+ it = islice(iterable, start, None)
875
+ for i, element in enumerate(it, start):
876
+ if element is value or element == value:
877
+ yield i
878
+ else:
879
+ # Fast path for sequences
880
+ i = start - 1
881
+ try:
882
+ while True:
883
+ yield (i := seq_index(value, i+1))
884
+ except ValueError:
885
+ pass
860
886
861
887
def sieve(n):
862
888
"Primes less than n"
@@ -978,16 +1004,19 @@ which incur interpreter overhead.
978
1004
# unique_everseen('AAAABBBCCDAABBB') --> A B C D
979
1005
# unique_everseen('ABBCcAD', str.lower) --> A B C D
980
1006
seen = set()
981
- seen_add = seen.add
982
1007
if key is None:
983
1008
for element in filterfalse(seen.__contains__, iterable):
984
- seen_add (element)
1009
+ seen.add (element)
985
1010
yield element
1011
+ # Note: The steps shown above are intended to demonstrate
1012
+ # filterfalse(). For order preserving deduplication,
1013
+ # a better solution is:
1014
+ # yield from dict.fromkeys(iterable)
986
1015
else:
987
1016
for element in iterable:
988
1017
k = key(element)
989
1018
if k not in seen:
990
- seen_add (k)
1019
+ seen.add (k)
991
1020
yield element
992
1021
993
1022
def unique_justseen(iterable, key=None):
@@ -1196,6 +1225,18 @@ which incur interpreter overhead.
1196
1225
[]
1197
1226
>>> list (iter_index(' ' , ' X' ))
1198
1227
[]
1228
+ >>> list (iter_index(' AABCADEAF' , ' A' , 1 ))
1229
+ [1, 4, 7]
1230
+ >>> list (iter_index(iter (' AABCADEAF' ), ' A' , 1 ))
1231
+ [1, 4, 7]
1232
+ >>> list (iter_index(' AABCADEAF' , ' A' , 2 ))
1233
+ [4, 7]
1234
+ >>> list (iter_index(iter (' AABCADEAF' ), ' A' , 2 ))
1235
+ [4, 7]
1236
+ >>> list (iter_index(' AABCADEAF' , ' A' , 10 ))
1237
+ []
1238
+ >>> list (iter_index(iter (' AABCADEAF' ), ' A' , 10 ))
1239
+ []
1199
1240
1200
1241
>>> list (sieve(30 ))
1201
1242
[2, 3, 5, 7, 11, 13, 17, 19, 23, 29]
0 commit comments