@@ -8,7 +8,7 @@ msgstr ""
8
8
"Project-Id-Version : Python 3.12\n "
9
9
"Report-Msgid-Bugs-To : \n "
10
10
"POT-Creation-Date : 2023-07-17 17:39+0800\n "
11
- "PO-Revision-Date : 2024-02-05 16:30 +0800\n "
11
+ "PO-Revision-Date : 2024-04-23 00:43 +0800\n "
12
12
"Last-Translator : Adrian Liaw <adrianliaw2000@gmail.com>\n "
13
13
"Language-Team : Chinese - TAIWAN (https://github.com/python/python-docs-zh- "
14
14
"tw)\n "
@@ -158,12 +158,17 @@ msgid ""
158
158
"zero, returns ``(0.0, 0)``, otherwise ``0.5 <= abs(m) < 1``. This is used "
159
159
"to \" pick apart\" the internal representation of a float in a portable way."
160
160
msgstr ""
161
+ "以 ``(m, e)`` 對的格式回傳 *x* 的尾數 *m* 及指數 *e*。*m* 是浮點數而 *e* 是整"
162
+ "數,且兩者精確地使 ``x == m * 2**e``。若 *x* 為零回傳 ``(0.0, 0)``,否則令 "
163
+ "``0.5 <= abs(m) < 1``。此函式用於以可攜的方式「分割」浮點數內部表示法。"
161
164
162
165
#: ../../library/math.rst:110
163
166
msgid ""
164
167
"Return an accurate floating point sum of values in the iterable. Avoids "
165
168
"loss of precision by tracking multiple intermediate partial sums."
166
169
msgstr ""
170
+ "回傳可疊代物件(iterable)中所有值的精確浮點數和。透過追蹤過程中多個部分和以"
171
+ "避免精確度損失。"
167
172
168
173
#: ../../library/math.rst:113
169
174
msgid ""
@@ -173,13 +178,18 @@ msgid ""
173
178
"occasionally double-round an intermediate sum causing it to be off in its "
174
179
"least significant bit."
175
180
msgstr ""
181
+ "此演算法準確性奠基於保證 IEEE-754 浮點標準及典型奇進偶捨模式。於有些非 "
182
+ "Windows 平台建置時,底層 C 函式庫使用延伸精度加法運算,而可能導致對過程中同一"
183
+ "部分和重複捨入,並使其最低有效位不如預期。"
176
184
177
185
#: ../../library/math.rst:119
178
186
msgid ""
179
187
"For further discussion and two alternative approaches, see the `ASPN "
180
188
"cookbook recipes for accurate floating point summation <https://code."
181
189
"activestate.com/recipes/393090/>`_\\ ."
182
190
msgstr ""
191
+ "更深入的討論及兩種替代做法請參閱 `ASPN cookbook recipes 精準的浮點數總和 "
192
+ "<https://code.activestate.com/recipes/393090/>`_。"
183
193
184
194
#: ../../library/math.rst:126
185
195
msgid ""
@@ -189,24 +199,27 @@ msgid ""
189
199
"zero, then the returned value is ``0``. ``gcd()`` without arguments returns "
190
200
"``0``."
191
201
msgstr ""
202
+ "回傳指定引數的最大公因數。若存在任一非零引數,回傳值為所有引數共有因數中最大"
203
+ "的正整數。若所有引數皆為零,則回傳值為 ``0``。``gcd()`` 若未傳入任何引數也將"
204
+ "回傳 ``0``。"
192
205
193
206
#: ../../library/math.rst:134
194
207
msgid ""
195
208
"Added support for an arbitrary number of arguments. Formerly, only two "
196
209
"arguments were supported."
197
- msgstr ""
210
+ msgstr "新增支援任意數量的引數。先前僅支援兩個引數。 "
198
211
199
212
#: ../../library/math.rst:141
200
213
msgid ""
201
214
"Return ``True`` if the values *a* and *b* are close to each other and "
202
215
"``False`` otherwise."
203
- msgstr ""
216
+ msgstr "若 *a* 及 *b* 兩值足夠接近便回傳 ``True``,否則回傳 ``False``。 "
204
217
205
218
#: ../../library/math.rst:144
206
219
msgid ""
207
220
"Whether or not two values are considered close is determined according to "
208
221
"given absolute and relative tolerances."
209
- msgstr ""
222
+ msgstr "兩數是否足夠接近取決於給定的絕對及相對容差。 "
210
223
211
224
#: ../../library/math.rst:147
212
225
msgid ""
@@ -216,18 +229,24 @@ msgid ""
216
229
"tolerance is ``1e-09``, which assures that the two values are the same "
217
230
"within about 9 decimal digits. *rel_tol* must be greater than zero."
218
231
msgstr ""
232
+ "*rel_tol* 為相對容差 ── *a* 與 *b* 兩數差的最大容許值,與 *a* 及 *b* 兩數的絕"
233
+ "對值中較大者相關。例如欲設置 5% 的誤差,則傳入 ``rel_tol=0.05``。其預設值為 "
234
+ "``1e-09``,該值可確保兩數於大約 9 個十進數位內相同。*rel_tol* 須大於 ``0``。"
219
235
220
236
#: ../../library/math.rst:153
221
237
msgid ""
222
238
"*abs_tol* is the minimum absolute tolerance -- useful for comparisons near "
223
239
"zero. *abs_tol* must be at least zero."
224
240
msgstr ""
241
+ "*abs_tol* 為最小絕對容差 ── 於接近零的比較時很有用。*abs_tol* 須大於 ``0``。"
225
242
226
243
#: ../../library/math.rst:156
227
244
msgid ""
228
245
"If no errors occur, the result will be: ``abs(a-b) <= max(rel_tol * "
229
246
"max(abs(a), abs(b)), abs_tol)``."
230
247
msgstr ""
248
+ "若未發生任何錯誤,函式結果為 ``abs(a-b) <= max(rel_tol * max(abs(a), "
249
+ "abs(b)), abs_tol)``。"
231
250
232
251
#: ../../library/math.rst:159
233
252
msgid ""
@@ -236,34 +255,43 @@ msgid ""
236
255
"close to any other value, including ``NaN``. ``inf`` and ``-inf`` are only "
237
256
"considered close to themselves."
238
257
msgstr ""
258
+ "定義於 IEEE 754 浮點標準中的特殊值 ``NaN``、``inf`` 和 ``-inf`` 會根據該標準"
259
+ "處理。更明確地說,``NaN`` 不會與包含自身在內的任何數字足夠接近,而 ``inf`` "
260
+ "及 ``-inf`` 皆只與自身接近。"
239
261
240
262
#: ../../library/math.rst:168
241
263
msgid ":pep:`485` -- A function for testing approximate equality"
242
- msgstr ""
264
+ msgstr ":pep:`485` ── 用於測試近似相等的函式 "
243
265
244
266
#: ../../library/math.rst:173
245
267
msgid ""
246
268
"Return ``True`` if *x* is neither an infinity nor a NaN, and ``False`` "
247
269
"otherwise. (Note that ``0.0`` *is* considered finite.)"
248
270
msgstr ""
271
+ "若 *x* 不是無限值或 ``NaN`` 便回傳 ``True``,否則回傳 ``False``。(注意 "
272
+ "``0.0`` 被視為有限數。)"
249
273
250
274
#: ../../library/math.rst:181
251
275
msgid ""
252
276
"Return ``True`` if *x* is a positive or negative infinity, and ``False`` "
253
277
"otherwise."
254
- msgstr ""
278
+ msgstr "若 *x* 是正無限值或負無限值便回傳 ``True``,否則回傳 ``False``。 "
255
279
256
280
#: ../../library/math.rst:187
257
281
msgid ""
258
282
"Return ``True`` if *x* is a NaN (not a number), and ``False`` otherwise."
259
283
msgstr ""
284
+ "若 *x* 是 ``NaN`` ── 即非數字(not a number)── 便回傳 ``True``,否則回傳 "
285
+ "``False``。"
260
286
261
287
#: ../../library/math.rst:192
262
288
msgid ""
263
289
"Return the integer square root of the nonnegative integer *n*. This is the "
264
290
"floor of the exact square root of *n*, or equivalently the greatest integer "
265
291
"*a* such that *a*\\ ² |nbsp| ≤ |nbsp| *n*."
266
292
msgstr ""
293
+ "回傳非負整數 *n* 的整數平方根。此值為 *n* 精確平方根經下取整的值,亦等同於滿"
294
+ "足 ``a² ≤ n`` 的最大整數值 *a*。"
267
295
268
296
#: ../../library/math.rst:196
269
297
msgid ""
@@ -272,6 +300,9 @@ msgid ""
272
300
"the exact square root of *n*. For positive *n*, this can be computed using "
273
301
"``a = 1 + isqrt(n - 1)``."
274
302
msgstr ""
303
+ "於有些應用中,取得滿足 ``n ≤ a²`` 的最小整數值 *a* ── 或者說 *n* 精確平方根經"
304
+ "上取整的值 ── 會更加方便。對正數 *n*,此值可使用 ``a = 1 + isqrt(n - 1)`` 計"
305
+ "算。"
275
306
276
307
#: ../../library/math.rst:206
277
308
msgid ""
@@ -281,12 +312,15 @@ msgid ""
281
312
"zero, then the returned value is ``0``. ``lcm()`` without arguments returns "
282
313
"``1``."
283
314
msgstr ""
315
+ "回傳指定引數的最小公倍數。若所有引數值皆非零,回傳值為所有引數共有倍數中最小"
316
+ "的正整數。若存在任一引數值為零,則回傳值為 ``0``。``lcm()`` 若未傳入任何引數"
317
+ "將回傳 ``1``。"
284
318
285
319
#: ../../library/math.rst:217
286
320
msgid ""
287
321
"Return ``x * (2**i)``. This is essentially the inverse of function :func:"
288
322
"`frexp`."
289
- msgstr ""
323
+ msgstr "回傳 ``x * (2**i)``。此函式本質上為 :func:`frexp` 的反函式。 "
290
324
291
325
#: ../../library/math.rst:223
292
326
msgid ""
0 commit comments