7
7
msgstr ""
8
8
"Project-Id-Version : Python 3.12\n "
9
9
"Report-Msgid-Bugs-To : \n "
10
- "POT-Creation-Date : 2024-05-09 00:03+0000\n "
11
- "PO-Revision-Date : 2024-02-05 16:30 +0800\n "
10
+ "POT-Creation-Date : 2024-03-14 00:03+0000\n "
11
+ "PO-Revision-Date : 2024-04-26 15:15 +0800\n "
12
12
"Last-Translator : Adrian Liaw <adrianliaw2000@gmail.com>\n "
13
13
"Language-Team : Chinese - TAIWAN (https://github.com/python/python-docs-zh- "
14
14
"tw)\n "
@@ -158,12 +158,17 @@ msgid ""
158
158
"zero, returns ``(0.0, 0)``, otherwise ``0.5 <= abs(m) < 1``. This is used "
159
159
"to \" pick apart\" the internal representation of a float in a portable way."
160
160
msgstr ""
161
+ "以 ``(m, e)`` 對的格式回傳 *x* 的尾數 *m* 及指數 *e*。*m* 是浮點數而 *e* 是整"
162
+ "數,且兩者精確地使 ``x == m * 2**e``。若 *x* 為零,回傳 ``(0.0, 0)``,否則令 "
163
+ "``0.5 <= abs(m) < 1``。此函式用於以可攜的方式「分割」浮點數內部表示法。"
161
164
162
165
#: ../../library/math.rst:110
163
166
msgid ""
164
167
"Return an accurate floating point sum of values in the iterable. Avoids "
165
168
"loss of precision by tracking multiple intermediate partial sums."
166
169
msgstr ""
170
+ "回傳可疊代物件(iterable)中所有值的精確浮點數和。透過追蹤過程中多個部分和"
171
+ "(partial sum)以避免精確度損失。"
167
172
168
173
#: ../../library/math.rst:113
169
174
msgid ""
@@ -173,6 +178,9 @@ msgid ""
173
178
"occasionally double-round an intermediate sum causing it to be off in its "
174
179
"least significant bit."
175
180
msgstr ""
181
+ "此演算法準確性奠基於保證 IEEE-754 浮點標準及典型奇進偶捨(half-even)模式。於"
182
+ "有些非 Windows 平台建置時,底層 C 函式庫使用延伸精度加法運算,而可能導致對過"
183
+ "程中同一部分和重複捨入,並使其最低有效位不如預期。"
176
184
177
185
#: ../../library/math.rst:119
178
186
msgid ""
@@ -181,6 +189,8 @@ msgid ""
181
189
"activestate.com/recipes/393090-binary-floating-point-summation-accurate-to-"
182
190
"full-p/>`_\\ ."
183
191
msgstr ""
192
+ "更深入的討論及兩種替代做法請參閱 `ASPN cookbook recipes 精準的浮點數總和 "
193
+ "<https://code.activestate.com/recipes/393090/>`_。"
184
194
185
195
#: ../../library/math.rst:126
186
196
msgid ""
@@ -190,24 +200,27 @@ msgid ""
190
200
"zero, then the returned value is ``0``. ``gcd()`` without arguments returns "
191
201
"``0``."
192
202
msgstr ""
203
+ "回傳指定整數引數的最大公因數。若存在任一非零引數,回傳值為所有引數共有因數中"
204
+ "最大的正整數。若所有引數皆為零,則回傳值為 ``0``。``gcd()`` 若未傳入任何引數"
205
+ "也將回傳 ``0``。"
193
206
194
207
#: ../../library/math.rst:134
195
208
msgid ""
196
209
"Added support for an arbitrary number of arguments. Formerly, only two "
197
210
"arguments were supported."
198
- msgstr ""
211
+ msgstr "新增支援任意數量的引數。先前僅支援兩個引數。 "
199
212
200
213
#: ../../library/math.rst:141
201
214
msgid ""
202
215
"Return ``True`` if the values *a* and *b* are close to each other and "
203
216
"``False`` otherwise."
204
- msgstr ""
217
+ msgstr "若 *a* 及 *b* 兩值足夠接近便回傳 ``True``,否則回傳 ``False``。 "
205
218
206
219
#: ../../library/math.rst:144
207
220
msgid ""
208
221
"Whether or not two values are considered close is determined according to "
209
222
"given absolute and relative tolerances."
210
- msgstr ""
223
+ msgstr "兩數是否足夠接近取決於給定的絕對及相對容許偏差(tolerance)。 "
211
224
212
225
#: ../../library/math.rst:147
213
226
msgid ""
@@ -217,18 +230,26 @@ msgid ""
217
230
"tolerance is ``1e-09``, which assures that the two values are the same "
218
231
"within about 9 decimal digits. *rel_tol* must be greater than zero."
219
232
msgstr ""
233
+ "*rel_tol* 為相對容許偏差 ── *a* 與 *b* 兩數差的最大容許值,與 *a* 及 *b* 兩數"
234
+ "的絕對值中較大者相關。例如欲設置 5% 的容許偏差,則傳入 ``rel_tol=0.05``。其預"
235
+ "設值為 ``1e-09``,該值可確保兩數於大約 9 個十進數位內相同。*rel_tol* 須大於 "
236
+ "``0``。"
220
237
221
238
#: ../../library/math.rst:153
222
239
msgid ""
223
240
"*abs_tol* is the minimum absolute tolerance -- useful for comparisons near "
224
241
"zero. *abs_tol* must be at least zero."
225
242
msgstr ""
243
+ "*abs_tol* 為最小絕對容許偏差 ── 於接近零的比較時很有用。*abs_tol* 須大於等於 "
244
+ "``0``。"
226
245
227
246
#: ../../library/math.rst:156
228
247
msgid ""
229
248
"If no errors occur, the result will be: ``abs(a-b) <= max(rel_tol * "
230
249
"max(abs(a), abs(b)), abs_tol)``."
231
250
msgstr ""
251
+ "若未發生任何錯誤,函式結果為 ``abs(a-b) <= max(rel_tol * max(abs(a), "
252
+ "abs(b)), abs_tol)``。"
232
253
233
254
#: ../../library/math.rst:159
234
255
msgid ""
@@ -237,34 +258,43 @@ msgid ""
237
258
"close to any other value, including ``NaN``. ``inf`` and ``-inf`` are only "
238
259
"considered close to themselves."
239
260
msgstr ""
261
+ "定義於 IEEE 754 浮點標準中的特殊值 ``NaN``、``inf`` 和 ``-inf`` 會根據該標準"
262
+ "處理。更明確地說,``NaN`` 不會與包含自身在內的任何數字足夠接近,而 ``inf`` "
263
+ "及 ``-inf`` 皆只與自身接近。"
240
264
241
265
#: ../../library/math.rst:168
242
266
msgid ":pep:`485` -- A function for testing approximate equality"
243
- msgstr ""
267
+ msgstr ":pep:`485` ── 用於測試近似相等的函式 "
244
268
245
269
#: ../../library/math.rst:173
246
270
msgid ""
247
271
"Return ``True`` if *x* is neither an infinity nor a NaN, and ``False`` "
248
272
"otherwise. (Note that ``0.0`` *is* considered finite.)"
249
273
msgstr ""
274
+ "若 *x* 不是無限值或 ``NaN`` 便回傳 ``True``,否則回傳 ``False``。(注意 "
275
+ "``0.0`` 被視為有限數。)"
250
276
251
277
#: ../../library/math.rst:181
252
278
msgid ""
253
279
"Return ``True`` if *x* is a positive or negative infinity, and ``False`` "
254
280
"otherwise."
255
- msgstr ""
281
+ msgstr "若 *x* 是正無限值或負無限值便回傳 ``True``,否則回傳 ``False``。 "
256
282
257
283
#: ../../library/math.rst:187
258
284
msgid ""
259
285
"Return ``True`` if *x* is a NaN (not a number), and ``False`` otherwise."
260
286
msgstr ""
287
+ "若 *x* 是 ``NaN`` ── 即非數字(NaN, not a number)── 便回傳 ``True``,否則回"
288
+ "傳 ``False``。"
261
289
262
290
#: ../../library/math.rst:192
263
291
msgid ""
264
292
"Return the integer square root of the nonnegative integer *n*. This is the "
265
293
"floor of the exact square root of *n*, or equivalently the greatest integer "
266
294
"*a* such that *a*\\ ² |nbsp| ≤ |nbsp| *n*."
267
295
msgstr ""
296
+ "回傳非負整數 *n* 的整數平方根。此值為 *n* 精確平方根經下取整的值,亦等同於滿"
297
+ "足 *a*\\ ² |nbsp| ≤ |nbsp| *n* 的最大整數值 *a*。"
268
298
269
299
#: ../../library/math.rst:196
270
300
msgid ""
@@ -273,6 +303,9 @@ msgid ""
273
303
"the exact square root of *n*. For positive *n*, this can be computed using "
274
304
"``a = 1 + isqrt(n - 1)``."
275
305
msgstr ""
306
+ "於有些應用程式中,取得滿足 *n* |nbsp| ≤ |nbsp| *a*\\ ² 的最小整數值 *a* ── 或"
307
+ "者說 *n* 精確平方根經上取整的值 ── 會更加方便。對正數 *n*,此值可使用 ``a = "
308
+ "1 + isqrt(n - 1)`` 計算。"
276
309
277
310
#: ../../library/math.rst:206
278
311
msgid ""
@@ -282,12 +315,15 @@ msgid ""
282
315
"zero, then the returned value is ``0``. ``lcm()`` without arguments returns "
283
316
"``1``."
284
317
msgstr ""
318
+ "回傳指定整數引數的最小公倍數。若所有引數值皆非零,回傳值為所有引數共有倍數中"
319
+ "最小的正整數。若存在任一引數值為零,則回傳值為 ``0``。``lcm()`` 若未傳入任何"
320
+ "引數將回傳 ``1``。"
285
321
286
322
#: ../../library/math.rst:217
287
323
msgid ""
288
324
"Return ``x * (2**i)``. This is essentially the inverse of function :func:"
289
325
"`frexp`."
290
- msgstr ""
326
+ msgstr "回傳 ``x * (2**i)``。此函式本質上為 :func:`frexp` 的反函式。 "
291
327
292
328
#: ../../library/math.rst:223
293
329
msgid ""
0 commit comments