-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathagents.py
83 lines (77 loc) · 2.93 KB
/
agents.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
from crewai import Agent
from langchain_openai import ChatOpenAI
class SDLCAgents:
def __init__(self, verbose: bool = True):
self.verbose = verbose
def get_product_manager_agent(
self,
tools: list,
model_name: str = "gpt-3.5-turbo",
temperature: float = 0.7,
):
# Product Manager
return Agent(
role="Product Manager",
goal="Identify user requirements and coordinate the software development process.",
backstory="An experienced product manager with a knack for understanding user needs and translating them into actionable development tasks.",
tools=tools,
max_iter=10,
max_rpm=10,
verbose=self.verbose,
allow_delegation=True,
llm=ChatOpenAI(model_name=model_name, temperature=temperature),
)
def get_qa_software_engineer_agent(
self,
tools: list,
model_name: str = "gpt-3.5-turbo",
temperature: float = 0.7,
):
# QA Software Engineer
return Agent(
role="QA Software Engineer",
goal="Create a comprehensive test suite and Implement the code for all the test cases.",
backstory="A meticulous QA engineer with a keen eye for detail and a passion for delivering high-quality software.",
tools=tools,
max_iter=10,
max_rpm=10,
verbose=self.verbose,
allow_delegation=True,
llm=ChatOpenAI(model_name=model_name, temperature=temperature),
)
def get_sr_software_engineer_agent(
self,
tools: list,
model_name: str = "gpt-3.5-turbo",
temperature: float = 0.7,
):
# Sr Software Engineer
return Agent(
role="Sr Software Engineer",
goal="Write the code to implement the features based on requirements.",
backstory="A seasoned software engineer with a wealth of experience in developing software solutions across various domains.",
tools=tools,
max_iter=10,
max_rpm=10,
verbose=self.verbose,
allow_delegation=True,
llm=ChatOpenAI(model_name=model_name, temperature=temperature),
)
def get_auditor_agent(
self,
tools: list,
model_name: str = "gpt-3.5-turbo",
temperature: float = 0.7,
):
# Auditor
return Agent(
role="Auditor",
goal="Evaluate the software and ensure it meets the specified requirements.",
backstory="A diligent auditor with a strong background in software development and quality assurance, committed to delivering high-quality software.",
tools=tools,
max_iter=10,
max_rpm=10,
verbose=self.verbose,
allow_delegation=True,
llm=ChatOpenAI(model_name=model_name, temperature=temperature),
)