-
Notifications
You must be signed in to change notification settings - Fork 245
/
Copy pathsubclass_8bit.py
231 lines (185 loc) · 7.6 KB
/
subclass_8bit.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the BSD 3-Clause license found in the
# LICENSE file in the root directory of this source tree.
import math
import torch
from torch import Tensor
from torch.utils._python_dispatch import return_and_correct_aliasing
from torchao.utils import (
TORCH_VERSION_AT_LEAST_2_4,
TORCH_VERSION_AT_LEAST_2_5,
TorchAOBaseTensor,
)
from .quant_utils import (
create_dynamic_map,
dequant_with_qmap,
quantize_8bit_with_qmap,
scale_tensor,
)
aten = torch.ops.aten
c10d_functional = torch.ops.c10d_functional
_c10d_functional = torch.ops._c10d_functional
QMAP_SIGNED = create_dynamic_map(signed=True)
QMAP_UNSIGNED = create_dynamic_map(signed=False)
class OptimState8bit(TorchAOBaseTensor):
tensor_attrs = ["codes", "scale", "qmap"]
@staticmethod
def __new__(cls, codes: Tensor, scale: Tensor, qmap: Tensor, signed: bool):
return Tensor._make_wrapper_subclass(cls, codes.shape, device=codes.device)
def __init__(self, codes: Tensor, scale: Tensor, qmap: Tensor, signed: bool):
"""Create quantized 8-bit optimizer state as proposed in https://arxiv.org/abs/2110.02861
Args
codes: quantized 8-bit data stored as uint8. Has the same shape as the original float tensor.
scale: scale data for block-wise quantization.
qmap: lookup table that maps between quantized value (code) and float value.
signed: whether the tensor is signed or unsigned.
NOTE: To get block-wise scale, the original float tensor is first reshape to (-1, block_size).
Thus, the last dimension of the original float tensor is not necessarily divisible by block size.
Given `codes` and `scale`, `block_size` is calculated as `codes.numel() // scale.numel()`.
"""
assert codes.dtype is torch.uint8
assert scale.ndim == 1
self.codes = codes
self.scale = scale
self.qmap = qmap
self.signed = signed
self.block_size = codes.numel() // scale.numel()
def __tensor_flatten__(self):
return self.tensor_attrs, [self.signed]
@classmethod
def __tensor_unflatten__(
cls, tensor_data_dict, tensor_attributes, outer_size=None, outer_stride=None
):
return cls(
*[tensor_data_dict[name] for name in cls.tensor_attrs], *tensor_attributes
)
def dequantize(self, output_dtype=None):
float_data = dequant_with_qmap(self.codes, self.qmap, self.scale)
if output_dtype is not None:
float_data = float_data.to(output_dtype)
return float_data
@classmethod
def zeros(cls, shape, signed: bool = True, block_size: int = 256, device=None):
codes = torch.zeros(shape, dtype=torch.uint8, device=device)
scale = torch.zeros(codes.numel() // block_size, device=device)
qmap = torch.tensor(QMAP_SIGNED if signed else QMAP_UNSIGNED, device=device)
return cls(codes, scale, qmap, signed)
def __repr__(self):
return (
f"{self.__class__.__name__}(signed={self.signed}, block_size={self.block_size}, "
f"shape={tuple(self.shape)}, device={self.device}, requires_grad={self.requires_grad})"
)
# in pre-2.4, calling .to(device, dtype) will not dispatch aten._to_copy.default when
# dtype is the same but device is different. thus, we must override .to() method instead.
if not TORCH_VERSION_AT_LEAST_2_4:
def _to(self, *args, **kwargs):
# ignore other args/kwargs
device = kwargs.pop("device", None)
return OptimState8bit(
self.codes.to(device),
self.scale.to(device),
self.qmap.to(device),
self.signed,
)
OptimState8bit.to = _to
del _to # make sure to not re-use
@OptimState8bit.implements(aten.copy_.default)
def _(func, types, args, kwargs):
dst = args[0]
src = args[1]
if isinstance(dst, OptimState8bit) and isinstance(src, OptimState8bit):
assert dst.signed == src.signed and dst.block_size == src.block_size
dst.codes.copy_(src.codes)
dst.scale.copy_(src.scale)
# qmap should be the same, don't need to copy
elif isinstance(dst, OptimState8bit):
scaled_src, scale = scale_tensor(src, dst.block_size)
codes = quantize_8bit_with_qmap(scaled_src, dst.qmap)
dst.codes.copy_(codes)
dst.scale.copy_(scale)
else:
dst.copy_(src.dequantize())
return dst
@OptimState8bit.implements(aten._to_copy.default)
def _(func, types, args, kwargs):
# ignore dtype
device = kwargs.get("device", None)
out = OptimState8bit(
args[0].codes.to(device=device),
args[0].scale.to(device=device),
args[0].qmap.to(device=device),
args[0].signed,
)
return return_and_correct_aliasing(func, args, kwargs, out)
@OptimState8bit.implements(aten.lerp.Scalar)
def _(func, types, args, kwargs):
args = [x.dequantize() if isinstance(x, OptimState8bit) else x for x in args]
return func(*args, **kwargs)
# this is needed for DTensor.from_local()
@OptimState8bit.implements(aten.view.default)
def _(func, types, args, kwargs):
x, shape = args
return OptimState8bit(x.codes.view(shape), x.scale, x.qmap, x.signed)
@OptimState8bit.implements(
[
# required by DTensor.full_tensor()
c10d_functional.all_gather_into_tensor.default,
_c10d_functional.all_gather_into_tensor.default,
c10d_functional.wait_tensor.default,
_c10d_functional.wait_tensor.default,
# required by torch.distributed.checkpoint.save
aten.detach.default,
]
)
def _(func, types, args, kwargs):
x = args[0]
if not isinstance(x, OptimState8bit):
raise ValueError(f"expecting a OptimState8bit but found {type(x)}")
# assume tensors from all ranks have the same signedness
return OptimState8bit(
func(x.codes, *args[1:], **kwargs),
func(x.scale, *args[1:], **kwargs),
x.qmap.clone(),
x.signed,
)
# required by torch.distributed.checkpoint.save
# note that we don't actually implement pin memory for this tensor subclass
# (pin_memory argument is ignored in aten._to_copy)
@OptimState8bit.implements(aten.is_pinned.default)
def _(func, types, args, kwargs):
return (
args[0].codes.is_pinned()
and args[0].scale.is_pinned()
and args[0].qmap.is_pinned()
)
# required by torch.distributed.checkpoint.load when world size changes i.e. re-sharding
@OptimState8bit.implements(aten.slice.Tensor)
def _(func, types, args, kwargs):
x, dim, start, end = args[:4]
step = args[4] if len(args) > 4 else 1
# input validation
if dim != 0:
raise ValueError("Only support aten.slice along the first dim")
if step != 1:
raise ValueError("Only support aten.slice with step=1")
block_size = x.block_size
stride = math.prod(x.shape[1:])
# for 1 increment in x along the first dim,
# (flattened) scale will increment by stride / block_size
if (start * stride) % block_size != 0 or (end * stride) % block_size != 0:
raise ValueError(
f"Invalid start or end for shape={x.shape} and block_size={block_size}. "
f"Make sure start and end align with block boundary. "
f"Received start={start}, end={end}."
)
return OptimState8bit(
x.codes[start:end],
x.scale[start * stride // block_size : end * stride // block_size],
x.qmap.clone(),
x.signed,
)
if TORCH_VERSION_AT_LEAST_2_5:
from torch.serialization import add_safe_globals
add_safe_globals([OptimState8bit])