@@ -22,27 +22,27 @@ this:
2222 \ /
2323 \ /
2424 —-------------------------------------------------------
25- | Dynamo Export |
25+ | Export |
2626 —-------------------------------------------------------
2727 |
2828 FX Graph in ATen XNNPACKQuantizer,
2929 | or X86InductorQuantizer,
3030 | or <Other Backend Quantizer>
3131 | /
3232 —--------------------------------------------------------
33- | prepare_pt2e |
33+ | prepare_pt2e |
3434 —--------------------------------------------------------
3535 |
3636 Calibrate/Train
3737 |
3838 —--------------------------------------------------------
39- | convert_pt2e |
39+ | convert_pt2e |
4040 —--------------------------------------------------------
4141 |
4242 Reference Quantized Model
4343 |
4444 —--------------------------------------------------------
45- | Lowering |
45+ | Lowering |
4646 —--------------------------------------------------------
4747 |
4848 Executorch, or Inductor, or <Other Backends>
@@ -189,8 +189,6 @@ and rename it to ``data/resnet18_pretrained_float.pth``.
189189 import numpy as np
190190
191191 import torch
192- from torch.ao.quantization import get_default_qconfig, QConfigMapping
193- from torch.ao.quantization.quantize_fx import prepare_fx, convert_fx, fuse_fx
194192 import torch.nn as nn
195193 from torch.utils.data import DataLoader
196194
@@ -358,7 +356,10 @@ Here is how you can use ``torch.export`` to export the model:
358356 from torch._export import capture_pre_autograd_graph
359357
360358 example_inputs = (torch.rand(2 , 3 , 224 , 224 ),)
361- exported_model, _ = capture_pre_autograd_graph(model_to_quantize, * example_inputs)
359+ exported_model = capture_pre_autograd_graph(model_to_quantize, example_inputs)
360+ # or capture with dynamic dimensions
361+ # from torch._export import dynamic_dim
362+ # exported_model = capture_pre_autograd_graph(model_to_quantize, example_inputs, constraints=[dynamic_dim(example_inputs[0], 0)])
362363
363364
364365 ``capture_pre_autograd_graph `` is a short term API, it will be updated to use the offical ``torch.export `` API when that is ready.
@@ -532,9 +533,9 @@ We'll show how to save and load the quantized model.
532533 # Rerun all steps to get a quantized model
533534 model_to_quantize = load_model(saved_model_dir + float_model_file).to(" cpu" )
534535 model_to_quantize.eval()
535- import torch._dynamo as torchdynamo
536+ from torch._export import capture_pre_autograd_graph
536537
537- exported_model, _ = torchdynamo.export (model_to_quantize, * copy.deepcopy( example_inputs), aten_graph = True , tracing_mode = " symbolic " )
538+ exported_model = capture_pre_autograd_graph (model_to_quantize, example_inputs)
538539 from torch.ao.quantization.quantizer.xnnpack_quantizer import (
539540 XNNPACKQuantizer,
540541 get_symmetric_quantization_config,
0 commit comments