@@ -221,7 +221,7 @@ way of doing it:
221221 from torchvision.models.detection.faster_rcnn import FastRCNNPredictor
222222
223223 # load a model pre-trained on COCO
224- model = torchvision.models.detection.fasterrcnn_resnet50_fpn(pretrained = True )
224+ model = torchvision.models.detection.fasterrcnn_resnet50_fpn(weights = " DEFAULT " )
225225
226226 # replace the classifier with a new one, that has
227227 # num_classes which is user-defined
@@ -242,7 +242,7 @@ way of doing it:
242242
243243 # load a pre-trained model for classification and return
244244 # only the features
245- backbone = torchvision.models.mobilenet_v2(pretrained = True ).features
245+ backbone = torchvision.models.mobilenet_v2(weights = " DEFAULT " ).features
246246 # FasterRCNN needs to know the number of
247247 # output channels in a backbone. For mobilenet_v2, it's 1280
248248 # so we need to add it here
@@ -291,7 +291,7 @@ be using Mask R-CNN:
291291
292292 def get_model_instance_segmentation (num_classes ):
293293 # load an instance segmentation model pre-trained on COCO
294- model = torchvision.models.detection.maskrcnn_resnet50_fpn(pretrained = True )
294+ model = torchvision.models.detection.maskrcnn_resnet50_fpn(weights = " DEFAULT " )
295295
296296 # get number of input features for the classifier
297297 in_features = model.roi_heads.box_predictor.cls_score.in_features
@@ -344,7 +344,7 @@ expects during training and inference time on sample data.
344344
345345.. code :: python
346346
347- model = torchvision.models.detection.fasterrcnn_resnet50_fpn(pretrained = True )
347+ model = torchvision.models.detection.fasterrcnn_resnet50_fpn(weights = " DEFAULT " )
348348 dataset = PennFudanDataset(' PennFudanPed' , get_transform(train = True ))
349349 data_loader = torch.utils.data.DataLoader(
350350 dataset, batch_size = 2 , shuffle = True , num_workers = 4 ,
0 commit comments