-
Notifications
You must be signed in to change notification settings - Fork 7k
/
test_datasets.py
2172 lines (1687 loc) · 82.8 KB
/
test_datasets.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
import bz2
import contextlib
import io
import itertools
import json
import os
import pathlib
import pickle
import random
import shutil
import string
import unittest
import xml.etree.ElementTree as ET
import zipfile
import datasets_utils
import numpy as np
import PIL
import pytest
import torch
import torch.nn.functional as F
from torchvision import datasets
class STL10TestCase(datasets_utils.ImageDatasetTestCase):
DATASET_CLASS = datasets.STL10
ADDITIONAL_CONFIGS = datasets_utils.combinations_grid(split=("train", "test", "unlabeled", "train+unlabeled"))
@staticmethod
def _make_binary_file(num_elements, root, name):
file_name = os.path.join(root, name)
np.zeros(num_elements, dtype=np.uint8).tofile(file_name)
@staticmethod
def _make_image_file(num_images, root, name, num_channels=3, height=96, width=96):
STL10TestCase._make_binary_file(num_images * num_channels * height * width, root, name)
@staticmethod
def _make_label_file(num_images, root, name):
STL10TestCase._make_binary_file(num_images, root, name)
@staticmethod
def _make_class_names_file(root, name="class_names.txt"):
with open(os.path.join(root, name), "w") as fh:
for cname in ("airplane", "bird"):
fh.write(f"{cname}\n")
@staticmethod
def _make_fold_indices_file(root):
num_folds = 10
offset = 0
with open(os.path.join(root, "fold_indices.txt"), "w") as fh:
for fold in range(num_folds):
line = " ".join([str(idx) for idx in range(offset, offset + fold + 1)])
fh.write(f"{line}\n")
offset += fold + 1
return tuple(range(1, num_folds + 1))
@staticmethod
def _make_train_files(root, num_unlabeled_images=1):
num_images_in_fold = STL10TestCase._make_fold_indices_file(root)
num_train_images = sum(num_images_in_fold)
STL10TestCase._make_image_file(num_train_images, root, "train_X.bin")
STL10TestCase._make_label_file(num_train_images, root, "train_y.bin")
STL10TestCase._make_image_file(1, root, "unlabeled_X.bin")
return dict(train=num_train_images, unlabeled=num_unlabeled_images)
@staticmethod
def _make_test_files(root, num_images=2):
STL10TestCase._make_image_file(num_images, root, "test_X.bin")
STL10TestCase._make_label_file(num_images, root, "test_y.bin")
return dict(test=num_images)
def inject_fake_data(self, tmpdir, config):
root_folder = os.path.join(tmpdir, "stl10_binary")
os.mkdir(root_folder)
num_images_in_split = self._make_train_files(root_folder)
num_images_in_split.update(self._make_test_files(root_folder))
self._make_class_names_file(root_folder)
return sum(num_images_in_split[part] for part in config["split"].split("+"))
def test_folds(self):
for fold in range(10):
with self.create_dataset(split="train", folds=fold) as (dataset, _):
assert len(dataset) == fold + 1
def test_unlabeled(self):
with self.create_dataset(split="unlabeled") as (dataset, _):
labels = [dataset[idx][1] for idx in range(len(dataset))]
assert all(label == -1 for label in labels)
def test_invalid_folds1(self):
with pytest.raises(ValueError):
with self.create_dataset(folds=10):
pass
def test_invalid_folds2(self):
with pytest.raises(ValueError):
with self.create_dataset(folds="0"):
pass
class Caltech101TestCase(datasets_utils.ImageDatasetTestCase):
DATASET_CLASS = datasets.Caltech101
FEATURE_TYPES = (PIL.Image.Image, (int, np.ndarray, tuple))
ADDITIONAL_CONFIGS = datasets_utils.combinations_grid(
target_type=("category", "annotation", ["category", "annotation"])
)
REQUIRED_PACKAGES = ("scipy",)
def inject_fake_data(self, tmpdir, config):
root = pathlib.Path(tmpdir) / "caltech101"
images = root / "101_ObjectCategories"
annotations = root / "Annotations"
categories = (("Faces", "Faces_2"), ("helicopter", "helicopter"), ("ying_yang", "ying_yang"))
num_images_per_category = 2
for image_category, annotation_category in categories:
datasets_utils.create_image_folder(
root=images,
name=image_category,
file_name_fn=lambda idx: f"image_{idx + 1:04d}.jpg",
num_examples=num_images_per_category,
)
self._create_annotation_folder(
root=annotations,
name=annotation_category,
file_name_fn=lambda idx: f"annotation_{idx + 1:04d}.mat",
num_examples=num_images_per_category,
)
# This is included in the original archive, but is removed by the dataset. Thus, an empty directory suffices.
os.makedirs(images / "BACKGROUND_Google")
return num_images_per_category * len(categories)
def _create_annotation_folder(self, root, name, file_name_fn, num_examples):
root = pathlib.Path(root) / name
os.makedirs(root)
for idx in range(num_examples):
self._create_annotation_file(root, file_name_fn(idx))
def _create_annotation_file(self, root, name):
mdict = dict(obj_contour=torch.rand((2, torch.randint(3, 6, size=())), dtype=torch.float64).numpy())
datasets_utils.lazy_importer.scipy.io.savemat(str(pathlib.Path(root) / name), mdict)
def test_combined_targets(self):
target_types = ["category", "annotation"]
individual_targets = []
for target_type in target_types:
with self.create_dataset(target_type=target_type) as (dataset, _):
_, target = dataset[0]
individual_targets.append(target)
with self.create_dataset(target_type=target_types) as (dataset, _):
_, combined_targets = dataset[0]
actual = len(individual_targets)
expected = len(combined_targets)
assert (
actual == expected
), "The number of the returned combined targets does not match the the number targets if requested "
f"individually: {actual} != {expected}",
for target_type, combined_target, individual_target in zip(target_types, combined_targets, individual_targets):
with self.subTest(target_type=target_type):
actual = type(combined_target)
expected = type(individual_target)
assert (
actual is expected
), "Type of the combined target does not match the type of the corresponding individual target: "
f"{actual} is not {expected}",
class Caltech256TestCase(datasets_utils.ImageDatasetTestCase):
DATASET_CLASS = datasets.Caltech256
def inject_fake_data(self, tmpdir, config):
tmpdir = pathlib.Path(tmpdir) / "caltech256" / "256_ObjectCategories"
categories = ((1, "ak47"), (127, "laptop-101"), (257, "clutter"))
num_images_per_category = 2
for idx, category in categories:
datasets_utils.create_image_folder(
tmpdir,
name=f"{idx:03d}.{category}",
file_name_fn=lambda image_idx: f"{idx:03d}_{image_idx + 1:04d}.jpg",
num_examples=num_images_per_category,
)
return num_images_per_category * len(categories)
class WIDERFaceTestCase(datasets_utils.ImageDatasetTestCase):
DATASET_CLASS = datasets.WIDERFace
FEATURE_TYPES = (PIL.Image.Image, (dict, type(None))) # test split returns None as target
ADDITIONAL_CONFIGS = datasets_utils.combinations_grid(split=("train", "val", "test"))
def inject_fake_data(self, tmpdir, config):
widerface_dir = pathlib.Path(tmpdir) / "widerface"
annotations_dir = widerface_dir / "wider_face_split"
os.makedirs(annotations_dir)
split_to_idx = split_to_num_examples = {
"train": 1,
"val": 2,
"test": 3,
}
# We need to create all folders regardless of the split in config
for split in ("train", "val", "test"):
split_idx = split_to_idx[split]
num_examples = split_to_num_examples[split]
datasets_utils.create_image_folder(
root=tmpdir,
name=widerface_dir / f"WIDER_{split}" / "images" / "0--Parade",
file_name_fn=lambda image_idx: f"0_Parade_marchingband_1_{split_idx + image_idx}.jpg",
num_examples=num_examples,
)
annotation_file_name = {
"train": annotations_dir / "wider_face_train_bbx_gt.txt",
"val": annotations_dir / "wider_face_val_bbx_gt.txt",
"test": annotations_dir / "wider_face_test_filelist.txt",
}[split]
annotation_content = {
"train": "".join(
f"0--Parade/0_Parade_marchingband_1_{split_idx + image_idx}.jpg\n1\n449 330 122 149 0 0 0 0 0 0\n"
for image_idx in range(num_examples)
),
"val": "".join(
f"0--Parade/0_Parade_marchingband_1_{split_idx + image_idx}.jpg\n1\n501 160 285 443 0 0 0 0 0 0\n"
for image_idx in range(num_examples)
),
"test": "".join(
f"0--Parade/0_Parade_marchingband_1_{split_idx + image_idx}.jpg\n"
for image_idx in range(num_examples)
),
}[split]
with open(annotation_file_name, "w") as annotation_file:
annotation_file.write(annotation_content)
return split_to_num_examples[config["split"]]
class CityScapesTestCase(datasets_utils.ImageDatasetTestCase):
DATASET_CLASS = datasets.Cityscapes
TARGET_TYPES = (
"instance",
"semantic",
"polygon",
"color",
)
ADDITIONAL_CONFIGS = (
*datasets_utils.combinations_grid(mode=("fine",), split=("train", "test", "val"), target_type=TARGET_TYPES),
*datasets_utils.combinations_grid(
mode=("coarse",),
split=("train", "train_extra", "val"),
target_type=TARGET_TYPES,
),
)
FEATURE_TYPES = (PIL.Image.Image, (dict, PIL.Image.Image))
def inject_fake_data(self, tmpdir, config):
tmpdir = pathlib.Path(tmpdir)
mode_to_splits = {
"Coarse": ["train", "train_extra", "val"],
"Fine": ["train", "test", "val"],
}
if config["split"] == "train": # just for coverage of the number of samples
cities = ["bochum", "bremen"]
else:
cities = ["bochum"]
polygon_target = {
"imgHeight": 1024,
"imgWidth": 2048,
"objects": [
{
"label": "sky",
"polygon": [
[1241, 0],
[1234, 156],
[1478, 197],
[1611, 172],
[1606, 0],
],
},
{
"label": "road",
"polygon": [
[0, 448],
[1331, 274],
[1473, 265],
[2047, 605],
[2047, 1023],
[0, 1023],
],
},
],
}
for mode in ["Coarse", "Fine"]:
gt_dir = tmpdir / f"gt{mode}"
for split in mode_to_splits[mode]:
for city in cities:
def make_image(name, size=10):
datasets_utils.create_image_folder(
root=gt_dir / split,
name=city,
file_name_fn=lambda _: name,
size=size,
num_examples=1,
)
make_image(f"{city}_000000_000000_gt{mode}_instanceIds.png")
make_image(f"{city}_000000_000000_gt{mode}_labelIds.png")
make_image(f"{city}_000000_000000_gt{mode}_color.png", size=(4, 10, 10))
polygon_target_name = gt_dir / split / city / f"{city}_000000_000000_gt{mode}_polygons.json"
with open(polygon_target_name, "w") as outfile:
json.dump(polygon_target, outfile)
# Create leftImg8bit folder
for split in ["test", "train_extra", "train", "val"]:
for city in cities:
datasets_utils.create_image_folder(
root=tmpdir / "leftImg8bit" / split,
name=city,
file_name_fn=lambda _: f"{city}_000000_000000_leftImg8bit.png",
num_examples=1,
)
info = {"num_examples": len(cities)}
if config["target_type"] == "polygon":
info["expected_polygon_target"] = polygon_target
return info
def test_combined_targets(self):
target_types = ["semantic", "polygon", "color"]
with self.create_dataset(target_type=target_types) as (dataset, _):
output = dataset[0]
assert isinstance(output, tuple)
assert len(output) == 2
assert isinstance(output[0], PIL.Image.Image)
assert isinstance(output[1], tuple)
assert len(output[1]) == 3
assert isinstance(output[1][0], PIL.Image.Image) # semantic
assert isinstance(output[1][1], dict) # polygon
assert isinstance(output[1][2], PIL.Image.Image) # color
def test_feature_types_target_color(self):
with self.create_dataset(target_type="color") as (dataset, _):
color_img, color_target = dataset[0]
assert isinstance(color_img, PIL.Image.Image)
assert np.array(color_target).shape[2] == 4
def test_feature_types_target_polygon(self):
with self.create_dataset(target_type="polygon") as (dataset, info):
polygon_img, polygon_target = dataset[0]
assert isinstance(polygon_img, PIL.Image.Image)
(polygon_target, info["expected_polygon_target"])
class ImageNetTestCase(datasets_utils.ImageDatasetTestCase):
DATASET_CLASS = datasets.ImageNet
REQUIRED_PACKAGES = ("scipy",)
ADDITIONAL_CONFIGS = datasets_utils.combinations_grid(split=("train", "val"))
def inject_fake_data(self, tmpdir, config):
tmpdir = pathlib.Path(tmpdir)
wnid = "n01234567"
if config["split"] == "train":
num_examples = 3
datasets_utils.create_image_folder(
root=tmpdir,
name=tmpdir / "train" / wnid / wnid,
file_name_fn=lambda image_idx: f"{wnid}_{image_idx}.JPEG",
num_examples=num_examples,
)
else:
num_examples = 1
datasets_utils.create_image_folder(
root=tmpdir,
name=tmpdir / "val" / wnid,
file_name_fn=lambda image_ifx: "ILSVRC2012_val_0000000{image_idx}.JPEG",
num_examples=num_examples,
)
wnid_to_classes = {wnid: [1]}
torch.save((wnid_to_classes, None), tmpdir / "meta.bin")
return num_examples
class CIFAR10TestCase(datasets_utils.ImageDatasetTestCase):
DATASET_CLASS = datasets.CIFAR10
ADDITIONAL_CONFIGS = datasets_utils.combinations_grid(train=(True, False))
_VERSION_CONFIG = dict(
base_folder="cifar-10-batches-py",
train_files=tuple(f"data_batch_{idx}" for idx in range(1, 6)),
test_files=("test_batch",),
labels_key="labels",
meta_file="batches.meta",
num_categories=10,
categories_key="label_names",
)
def inject_fake_data(self, tmpdir, config):
tmpdir = pathlib.Path(tmpdir) / self._VERSION_CONFIG["base_folder"]
os.makedirs(tmpdir)
num_images_per_file = 1
for name in itertools.chain(self._VERSION_CONFIG["train_files"], self._VERSION_CONFIG["test_files"]):
self._create_batch_file(tmpdir, name, num_images_per_file)
categories = self._create_meta_file(tmpdir)
return dict(
num_examples=num_images_per_file
* len(self._VERSION_CONFIG["train_files"] if config["train"] else self._VERSION_CONFIG["test_files"]),
categories=categories,
)
def _create_batch_file(self, root, name, num_images):
np_rng = np.random.RandomState(0)
data = datasets_utils.create_image_or_video_tensor((num_images, 32 * 32 * 3))
labels = np_rng.randint(0, self._VERSION_CONFIG["num_categories"], size=num_images).tolist()
self._create_binary_file(root, name, {"data": data, self._VERSION_CONFIG["labels_key"]: labels})
def _create_meta_file(self, root):
categories = [
f"{idx:0{len(str(self._VERSION_CONFIG['num_categories'] - 1))}d}"
for idx in range(self._VERSION_CONFIG["num_categories"])
]
self._create_binary_file(
root, self._VERSION_CONFIG["meta_file"], {self._VERSION_CONFIG["categories_key"]: categories}
)
return categories
def _create_binary_file(self, root, name, content):
with open(pathlib.Path(root) / name, "wb") as fh:
pickle.dump(content, fh)
def test_class_to_idx(self):
with self.create_dataset() as (dataset, info):
expected = {category: label for label, category in enumerate(info["categories"])}
actual = dataset.class_to_idx
assert actual == expected
class CIFAR100(CIFAR10TestCase):
DATASET_CLASS = datasets.CIFAR100
_VERSION_CONFIG = dict(
base_folder="cifar-100-python",
train_files=("train",),
test_files=("test",),
labels_key="fine_labels",
meta_file="meta",
num_categories=100,
categories_key="fine_label_names",
)
class CelebATestCase(datasets_utils.ImageDatasetTestCase):
DATASET_CLASS = datasets.CelebA
FEATURE_TYPES = (PIL.Image.Image, (torch.Tensor, int, tuple, type(None)))
ADDITIONAL_CONFIGS = datasets_utils.combinations_grid(
split=("train", "valid", "test", "all"),
target_type=("attr", "identity", "bbox", "landmarks", ["attr", "identity"]),
)
_SPLIT_TO_IDX = dict(train=0, valid=1, test=2)
def inject_fake_data(self, tmpdir, config):
base_folder = pathlib.Path(tmpdir) / "celeba"
os.makedirs(base_folder)
num_images, num_images_per_split = self._create_split_txt(base_folder)
datasets_utils.create_image_folder(
base_folder, "img_align_celeba", lambda idx: f"{idx + 1:06d}.jpg", num_images
)
attr_names = self._create_attr_txt(base_folder, num_images)
self._create_identity_txt(base_folder, num_images)
self._create_bbox_txt(base_folder, num_images)
self._create_landmarks_txt(base_folder, num_images)
return dict(num_examples=num_images_per_split[config["split"]], attr_names=attr_names)
def _create_split_txt(self, root):
num_images_per_split = dict(train=4, valid=3, test=2)
data = [
[self._SPLIT_TO_IDX[split]] for split, num_images in num_images_per_split.items() for _ in range(num_images)
]
self._create_txt(root, "list_eval_partition.txt", data)
num_images_per_split["all"] = num_images = sum(num_images_per_split.values())
return num_images, num_images_per_split
def _create_attr_txt(self, root, num_images):
header = ("5_o_Clock_Shadow", "Young")
data = torch.rand((num_images, len(header))).ge(0.5).int().mul(2).sub(1).tolist()
self._create_txt(root, "list_attr_celeba.txt", data, header=header, add_num_examples=True)
return header
def _create_identity_txt(self, root, num_images):
data = torch.randint(1, 4, size=(num_images, 1)).tolist()
self._create_txt(root, "identity_CelebA.txt", data)
def _create_bbox_txt(self, root, num_images):
header = ("x_1", "y_1", "width", "height")
data = torch.randint(10, size=(num_images, len(header))).tolist()
self._create_txt(
root, "list_bbox_celeba.txt", data, header=header, add_num_examples=True, add_image_id_to_header=True
)
def _create_landmarks_txt(self, root, num_images):
header = ("lefteye_x", "rightmouth_y")
data = torch.randint(10, size=(num_images, len(header))).tolist()
self._create_txt(root, "list_landmarks_align_celeba.txt", data, header=header, add_num_examples=True)
def _create_txt(self, root, name, data, header=None, add_num_examples=False, add_image_id_to_header=False):
with open(pathlib.Path(root) / name, "w") as fh:
if add_num_examples:
fh.write(f"{len(data)}\n")
if header:
if add_image_id_to_header:
header = ("image_id", *header)
fh.write(f"{' '.join(header)}\n")
for idx, line in enumerate(data, 1):
fh.write(f"{' '.join((f'{idx:06d}.jpg', *[str(value) for value in line]))}\n")
def test_combined_targets(self):
target_types = ["attr", "identity", "bbox", "landmarks"]
individual_targets = []
for target_type in target_types:
with self.create_dataset(target_type=target_type) as (dataset, _):
_, target = dataset[0]
individual_targets.append(target)
with self.create_dataset(target_type=target_types) as (dataset, _):
_, combined_targets = dataset[0]
actual = len(individual_targets)
expected = len(combined_targets)
assert (
actual == expected
), "The number of the returned combined targets does not match the the number targets if requested "
f"individually: {actual} != {expected}",
for target_type, combined_target, individual_target in zip(target_types, combined_targets, individual_targets):
with self.subTest(target_type=target_type):
actual = type(combined_target)
expected = type(individual_target)
assert (
actual is expected
), "Type of the combined target does not match the type of the corresponding individual target: "
f"{actual} is not {expected}",
def test_no_target(self):
with self.create_dataset(target_type=[]) as (dataset, _):
_, target = dataset[0]
assert target is None
def test_attr_names(self):
with self.create_dataset() as (dataset, info):
assert tuple(dataset.attr_names) == info["attr_names"]
def test_images_names_split(self):
with self.create_dataset(split="all") as (dataset, _):
all_imgs_names = set(dataset.filename)
merged_imgs_names = set()
for split in ["train", "valid", "test"]:
with self.create_dataset(split=split) as (dataset, _):
merged_imgs_names.update(dataset.filename)
assert merged_imgs_names == all_imgs_names
class VOCSegmentationTestCase(datasets_utils.ImageDatasetTestCase):
DATASET_CLASS = datasets.VOCSegmentation
FEATURE_TYPES = (PIL.Image.Image, PIL.Image.Image)
ADDITIONAL_CONFIGS = (
*datasets_utils.combinations_grid(
year=[f"20{year:02d}" for year in range(7, 13)], image_set=("train", "val", "trainval")
),
dict(year="2007", image_set="test"),
dict(year="2007-test", image_set="test"),
)
def inject_fake_data(self, tmpdir, config):
year, is_test_set = (
("2007", True)
if config["year"] == "2007-test" or config["image_set"] == "test"
else (config["year"], False)
)
image_set = config["image_set"]
base_dir = pathlib.Path(tmpdir)
if year == "2011":
base_dir /= "TrainVal"
base_dir = base_dir / "VOCdevkit" / f"VOC{year}"
os.makedirs(base_dir)
num_images, num_images_per_image_set = self._create_image_set_files(base_dir, "ImageSets", is_test_set)
datasets_utils.create_image_folder(base_dir, "JPEGImages", lambda idx: f"{idx:06d}.jpg", num_images)
datasets_utils.create_image_folder(base_dir, "SegmentationClass", lambda idx: f"{idx:06d}.png", num_images)
annotation = self._create_annotation_files(base_dir, "Annotations", num_images)
return dict(num_examples=num_images_per_image_set[image_set], annotation=annotation)
def _create_image_set_files(self, root, name, is_test_set):
root = pathlib.Path(root) / name
src = pathlib.Path(root) / "Main"
os.makedirs(src, exist_ok=True)
idcs = dict(train=(0, 1, 2), val=(3, 4), test=(5,))
idcs["trainval"] = (*idcs["train"], *idcs["val"])
for image_set in ("test",) if is_test_set else ("train", "val", "trainval"):
self._create_image_set_file(src, image_set, idcs[image_set])
shutil.copytree(src, root / "Segmentation")
num_images = max(itertools.chain(*idcs.values())) + 1
num_images_per_image_set = {image_set: len(idcs_) for image_set, idcs_ in idcs.items()}
return num_images, num_images_per_image_set
def _create_image_set_file(self, root, image_set, idcs):
with open(pathlib.Path(root) / f"{image_set}.txt", "w") as fh:
fh.writelines([f"{idx:06d}\n" for idx in idcs])
def _create_annotation_files(self, root, name, num_images):
root = pathlib.Path(root) / name
os.makedirs(root)
for idx in range(num_images):
annotation = self._create_annotation_file(root, f"{idx:06d}.xml")
return annotation
def _create_annotation_file(self, root, name):
def add_child(parent, name, text=None):
child = ET.SubElement(parent, name)
child.text = text
return child
def add_name(obj, name="dog"):
add_child(obj, "name", name)
return name
def add_bndbox(obj, bndbox=None):
if bndbox is None:
bndbox = {"xmin": "1", "xmax": "2", "ymin": "3", "ymax": "4"}
obj = add_child(obj, "bndbox")
for name, text in bndbox.items():
add_child(obj, name, text)
return bndbox
annotation = ET.Element("annotation")
obj = add_child(annotation, "object")
data = dict(name=add_name(obj), bndbox=add_bndbox(obj))
with open(pathlib.Path(root) / name, "wb") as fh:
fh.write(ET.tostring(annotation))
return data
class VOCDetectionTestCase(VOCSegmentationTestCase):
DATASET_CLASS = datasets.VOCDetection
FEATURE_TYPES = (PIL.Image.Image, dict)
def test_annotations(self):
with self.create_dataset() as (dataset, info):
_, target = dataset[0]
assert "annotation" in target
annotation = target["annotation"]
assert "object" in annotation
objects = annotation["object"]
assert len(objects) == 1
object = objects[0]
assert object == info["annotation"]
class CocoDetectionTestCase(datasets_utils.ImageDatasetTestCase):
DATASET_CLASS = datasets.CocoDetection
FEATURE_TYPES = (PIL.Image.Image, list)
REQUIRED_PACKAGES = ("pycocotools",)
_IMAGE_FOLDER = "images"
_ANNOTATIONS_FOLDER = "annotations"
_ANNOTATIONS_FILE = "annotations.json"
def dataset_args(self, tmpdir, config):
tmpdir = pathlib.Path(tmpdir)
root = tmpdir / self._IMAGE_FOLDER
annotation_file = tmpdir / self._ANNOTATIONS_FOLDER / self._ANNOTATIONS_FILE
return root, annotation_file
def inject_fake_data(self, tmpdir, config):
tmpdir = pathlib.Path(tmpdir)
num_images = 3
num_annotations_per_image = 2
files = datasets_utils.create_image_folder(
tmpdir, name=self._IMAGE_FOLDER, file_name_fn=lambda idx: f"{idx:012d}.jpg", num_examples=num_images
)
file_names = [file.relative_to(tmpdir / self._IMAGE_FOLDER) for file in files]
annotation_folder = tmpdir / self._ANNOTATIONS_FOLDER
os.makedirs(annotation_folder)
info = self._create_annotation_file(
annotation_folder, self._ANNOTATIONS_FILE, file_names, num_annotations_per_image
)
info["num_examples"] = num_images
return info
def _create_annotation_file(self, root, name, file_names, num_annotations_per_image):
image_ids = [int(file_name.stem) for file_name in file_names]
images = [dict(file_name=str(file_name), id=id) for file_name, id in zip(file_names, image_ids)]
annotations, info = self._create_annotations(image_ids, num_annotations_per_image)
self._create_json(root, name, dict(images=images, annotations=annotations))
return info
def _create_annotations(self, image_ids, num_annotations_per_image):
annotations = datasets_utils.combinations_grid(
image_id=image_ids, bbox=([1.0, 2.0, 3.0, 4.0],) * num_annotations_per_image
)
for id, annotation in enumerate(annotations):
annotation["id"] = id
return annotations, dict()
def _create_json(self, root, name, content):
file = pathlib.Path(root) / name
with open(file, "w") as fh:
json.dump(content, fh)
return file
class CocoCaptionsTestCase(CocoDetectionTestCase):
DATASET_CLASS = datasets.CocoCaptions
def _create_annotations(self, image_ids, num_annotations_per_image):
captions = [str(idx) for idx in range(num_annotations_per_image)]
annotations = datasets_utils.combinations_grid(image_id=image_ids, caption=captions)
for id, annotation in enumerate(annotations):
annotation["id"] = id
return annotations, dict(captions=captions)
def test_captions(self):
with self.create_dataset() as (dataset, info):
_, captions = dataset[0]
assert tuple(captions) == tuple(info["captions"])
class UCF101TestCase(datasets_utils.VideoDatasetTestCase):
DATASET_CLASS = datasets.UCF101
ADDITIONAL_CONFIGS = datasets_utils.combinations_grid(fold=(1, 2, 3), train=(True, False))
_VIDEO_FOLDER = "videos"
_ANNOTATIONS_FOLDER = "annotations"
def dataset_args(self, tmpdir, config):
tmpdir = pathlib.Path(tmpdir)
root = tmpdir / self._VIDEO_FOLDER
annotation_path = tmpdir / self._ANNOTATIONS_FOLDER
return root, annotation_path
def inject_fake_data(self, tmpdir, config):
tmpdir = pathlib.Path(tmpdir)
video_folder = tmpdir / self._VIDEO_FOLDER
os.makedirs(video_folder)
video_files = self._create_videos(video_folder)
annotations_folder = tmpdir / self._ANNOTATIONS_FOLDER
os.makedirs(annotations_folder)
num_examples = self._create_annotation_files(annotations_folder, video_files, config["fold"], config["train"])
return num_examples
def _create_videos(self, root, num_examples_per_class=3):
def file_name_fn(cls, idx, clips_per_group=2):
return f"v_{cls}_g{(idx // clips_per_group) + 1:02d}_c{(idx % clips_per_group) + 1:02d}.avi"
video_files = [
datasets_utils.create_video_folder(root, cls, lambda idx: file_name_fn(cls, idx), num_examples_per_class)
for cls in ("ApplyEyeMakeup", "YoYo")
]
return [path.relative_to(root) for path in itertools.chain(*video_files)]
def _create_annotation_files(self, root, video_files, fold, train):
current_videos = random.sample(video_files, random.randrange(1, len(video_files) - 1))
current_annotation = self._annotation_file_name(fold, train)
self._create_annotation_file(root, current_annotation, current_videos)
other_videos = set(video_files) - set(current_videos)
other_annotations = [
self._annotation_file_name(fold, train) for fold, train in itertools.product((1, 2, 3), (True, False))
]
other_annotations.remove(current_annotation)
for name in other_annotations:
self._create_annotation_file(root, name, other_videos)
return len(current_videos)
def _annotation_file_name(self, fold, train):
return f"{'train' if train else 'test'}list{fold:02d}.txt"
def _create_annotation_file(self, root, name, video_files):
with open(pathlib.Path(root) / name, "w") as fh:
fh.writelines(f"{file}\n" for file in sorted(video_files))
class LSUNTestCase(datasets_utils.ImageDatasetTestCase):
DATASET_CLASS = datasets.LSUN
REQUIRED_PACKAGES = ("lmdb",)
ADDITIONAL_CONFIGS = datasets_utils.combinations_grid(
classes=("train", "test", "val", ["bedroom_train", "church_outdoor_train"])
)
_CATEGORIES = (
"bedroom",
"bridge",
"church_outdoor",
"classroom",
"conference_room",
"dining_room",
"kitchen",
"living_room",
"restaurant",
"tower",
)
def inject_fake_data(self, tmpdir, config):
root = pathlib.Path(tmpdir)
num_images = 0
for cls in self._parse_classes(config["classes"]):
num_images += self._create_lmdb(root, cls)
return num_images
@contextlib.contextmanager
def create_dataset(self, *args, **kwargs):
with super().create_dataset(*args, **kwargs) as output:
yield output
# Currently datasets.LSUN caches the keys in the current directory rather than in the root directory. Thus,
# this creates a number of _cache_* files in the current directory that will not be removed together
# with the temporary directory
for file in os.listdir(os.getcwd()):
if file.startswith("_cache_"):
try:
os.remove(file)
except FileNotFoundError:
# When the same test is run in parallel (in fb internal tests), a thread may remove another
# thread's file. We should be able to remove the try/except when
# https://github.com/pytorch/vision/issues/825 is fixed.
pass
def _parse_classes(self, classes):
if not isinstance(classes, str):
return classes
split = classes
if split == "test":
return [split]
return [f"{category}_{split}" for category in self._CATEGORIES]
def _create_lmdb(self, root, cls):
lmdb = datasets_utils.lazy_importer.lmdb
hexdigits_lowercase = string.digits + string.ascii_lowercase[:6]
folder = f"{cls}_lmdb"
num_images = torch.randint(1, 4, size=()).item()
format = "png"
files = datasets_utils.create_image_folder(root, folder, lambda idx: f"{idx}.{format}", num_images)
with lmdb.open(str(root / folder)) as env, env.begin(write=True) as txn:
for file in files:
key = "".join(random.choice(hexdigits_lowercase) for _ in range(40)).encode()
buffer = io.BytesIO()
PIL.Image.open(file).save(buffer, format)
buffer.seek(0)
value = buffer.read()
txn.put(key, value)
os.remove(file)
return num_images
def test_not_found_or_corrupted(self):
# LSUN does not raise built-in exception, but a custom one. It is expressive enough to not 'cast' it to
# RuntimeError or FileNotFoundError that are normally checked by this test.
with pytest.raises(datasets_utils.lazy_importer.lmdb.Error):
super().test_not_found_or_corrupted()
class KineticsTestCase(datasets_utils.VideoDatasetTestCase):
DATASET_CLASS = datasets.Kinetics
ADDITIONAL_CONFIGS = datasets_utils.combinations_grid(split=("train", "val"), num_classes=("400", "600", "700"))
def inject_fake_data(self, tmpdir, config):
classes = ("Abseiling", "Zumba")
num_videos_per_class = 2
tmpdir = pathlib.Path(tmpdir) / config["split"]
digits = string.ascii_letters + string.digits + "-_"
for cls in classes:
datasets_utils.create_video_folder(
tmpdir,
cls,
lambda _: f"{datasets_utils.create_random_string(11, digits)}.mp4",
num_videos_per_class,
)
return num_videos_per_class * len(classes)
class Kinetics400TestCase(datasets_utils.VideoDatasetTestCase):
DATASET_CLASS = datasets.Kinetics400
def inject_fake_data(self, tmpdir, config):
classes = ("Abseiling", "Zumba")
num_videos_per_class = 2
digits = string.ascii_letters + string.digits + "-_"
for cls in classes:
datasets_utils.create_video_folder(
tmpdir,
cls,
lambda _: f"{datasets_utils.create_random_string(11, digits)}.avi",
num_videos_per_class,
)
return num_videos_per_class * len(classes)
class HMDB51TestCase(datasets_utils.VideoDatasetTestCase):
DATASET_CLASS = datasets.HMDB51
ADDITIONAL_CONFIGS = datasets_utils.combinations_grid(fold=(1, 2, 3), train=(True, False))
_VIDEO_FOLDER = "videos"
_SPLITS_FOLDER = "splits"
_CLASSES = ("brush_hair", "wave")
def dataset_args(self, tmpdir, config):
tmpdir = pathlib.Path(tmpdir)
root = tmpdir / self._VIDEO_FOLDER
annotation_path = tmpdir / self._SPLITS_FOLDER
return root, annotation_path