-
Notifications
You must be signed in to change notification settings - Fork 7k
/
test_models.py
891 lines (742 loc) · 31.2 KB
/
test_models.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
import contextlib
import functools
import operator
import os
import pkgutil
import sys
import warnings
from collections import OrderedDict
from tempfile import TemporaryDirectory
from typing import Any
import pytest
import torch
import torch.fx
import torch.nn as nn
from _utils_internal import get_relative_path
from common_utils import map_nested_tensor_object, freeze_rng_state, set_rng_seed, cpu_and_gpu, needs_cuda
from torchvision import models
ACCEPT = os.getenv("EXPECTTEST_ACCEPT", "0") == "1"
def get_models_from_module(module):
# TODO add a registration mechanism to torchvision.models
return [
v
for k, v in module.__dict__.items()
if callable(v) and k[0].lower() == k[0] and k[0] != "_" and k != "get_weight"
]
@pytest.fixture
def disable_weight_loading(mocker):
"""When testing models, the two slowest operations are the downloading of the weights to a file and loading them
into the model. Unless, you want to test against specific weights, these steps can be disabled without any
drawbacks.
Including this fixture into the signature of your test, i.e. `test_foo(disable_weight_loading)`, will recurse
through all models in `torchvision.models` and will patch all occurrences of the function
`download_state_dict_from_url` as well as the method `load_state_dict` on all subclasses of `nn.Module` to be
no-ops.
.. warning:
Loaded models are still executable as normal, but will always have random weights. Make sure to not use this
fixture if you want to compare the model output against reference values.
"""
starting_point = models
function_name = "load_state_dict_from_url"
method_name = "load_state_dict"
module_names = {info.name for info in pkgutil.walk_packages(starting_point.__path__, f"{starting_point.__name__}.")}
targets = {f"torchvision._internally_replaced_utils.{function_name}", f"torch.nn.Module.{method_name}"}
for name in module_names:
module = sys.modules.get(name)
if not module:
continue
if function_name in module.__dict__:
targets.add(f"{module.__name__}.{function_name}")
targets.update(
{
f"{module.__name__}.{obj.__name__}.{method_name}"
for obj in module.__dict__.values()
if isinstance(obj, type) and issubclass(obj, nn.Module) and method_name in obj.__dict__
}
)
for target in targets:
# See https://github.com/pytorch/vision/pull/4867#discussion_r743677802 for details
with contextlib.suppress(AttributeError):
mocker.patch(target)
def _get_expected_file(name=None):
# Determine expected file based on environment
expected_file_base = get_relative_path(os.path.realpath(__file__), "expect")
# Note: for legacy reasons, the reference file names all had "ModelTest.test_" in their names
# We hardcode it here to avoid having to re-generate the reference files
expected_file = os.path.join(expected_file_base, "ModelTester.test_" + name)
expected_file += "_expect.pkl"
if not ACCEPT and not os.path.exists(expected_file):
raise RuntimeError(
f"No expect file exists for {os.path.basename(expected_file)} in {expected_file}; "
"to accept the current output, re-run the failing test after setting the EXPECTTEST_ACCEPT "
"env variable. For example: EXPECTTEST_ACCEPT=1 pytest test/test_models.py -k alexnet"
)
return expected_file
def _assert_expected(output, name, prec=None, atol=None, rtol=None):
"""Test that a python value matches the recorded contents of a file
based on a "check" name. The value must be
pickable with `torch.save`. This file
is placed in the 'expect' directory in the same directory
as the test script. You can automatically update the recorded test
output using an EXPECTTEST_ACCEPT=1 env variable.
"""
expected_file = _get_expected_file(name)
if ACCEPT:
filename = {os.path.basename(expected_file)}
print(f"Accepting updated output for {filename}:\n\n{output}")
torch.save(output, expected_file)
MAX_PICKLE_SIZE = 50 * 1000 # 50 KB
binary_size = os.path.getsize(expected_file)
if binary_size > MAX_PICKLE_SIZE:
raise RuntimeError(f"The output for {filename}, is larger than 50kb - got {binary_size}kb")
else:
expected = torch.load(expected_file)
rtol = rtol or prec # keeping prec param for legacy reason, but could be removed ideally
atol = atol or prec
torch.testing.assert_close(output, expected, rtol=rtol, atol=atol, check_dtype=False)
def _check_jit_scriptable(nn_module, args, unwrapper=None, eager_out=None):
"""Check that a nn.Module's results in TorchScript match eager and that it can be exported"""
def get_export_import_copy(m):
"""Save and load a TorchScript model"""
with TemporaryDirectory() as dir:
path = os.path.join(dir, "script.pt")
m.save(path)
imported = torch.jit.load(path)
return imported
sm = torch.jit.script(nn_module)
if eager_out is None:
with torch.no_grad(), freeze_rng_state():
eager_out = nn_module(*args)
with torch.no_grad(), freeze_rng_state():
script_out = sm(*args)
if unwrapper:
script_out = unwrapper(script_out)
torch.testing.assert_close(eager_out, script_out, atol=1e-4, rtol=1e-4)
m_import = get_export_import_copy(sm)
with torch.no_grad(), freeze_rng_state():
imported_script_out = m_import(*args)
if unwrapper:
imported_script_out = unwrapper(imported_script_out)
torch.testing.assert_close(script_out, imported_script_out, atol=3e-4, rtol=3e-4)
def _check_fx_compatible(model, inputs, eager_out=None):
model_fx = torch.fx.symbolic_trace(model)
if eager_out is None:
eager_out = model(inputs)
fx_out = model_fx(inputs)
torch.testing.assert_close(eager_out, fx_out)
def _check_input_backprop(model, inputs):
if isinstance(inputs, list):
requires_grad = list()
for inp in inputs:
requires_grad.append(inp.requires_grad)
inp.requires_grad_(True)
else:
requires_grad = inputs.requires_grad
inputs.requires_grad_(True)
out = model(inputs)
if isinstance(out, dict):
out["out"].sum().backward()
else:
if isinstance(out[0], dict):
out[0]["scores"].sum().backward()
else:
out[0].sum().backward()
if isinstance(inputs, list):
for i, inp in enumerate(inputs):
assert inputs[i].grad is not None
inp.requires_grad_(requires_grad[i])
else:
assert inputs.grad is not None
inputs.requires_grad_(requires_grad)
# If 'unwrapper' is provided it will be called with the script model outputs
# before they are compared to the eager model outputs. This is useful if the
# model outputs are different between TorchScript / Eager mode
script_model_unwrapper = {
"googlenet": lambda x: x.logits,
"inception_v3": lambda x: x.logits,
"fasterrcnn_resnet50_fpn": lambda x: x[1],
"fasterrcnn_mobilenet_v3_large_fpn": lambda x: x[1],
"fasterrcnn_mobilenet_v3_large_320_fpn": lambda x: x[1],
"maskrcnn_resnet50_fpn": lambda x: x[1],
"keypointrcnn_resnet50_fpn": lambda x: x[1],
"retinanet_resnet50_fpn": lambda x: x[1],
"ssd300_vgg16": lambda x: x[1],
"ssdlite320_mobilenet_v3_large": lambda x: x[1],
"fcos_resnet50_fpn": lambda x: x[1],
}
# The following models exhibit flaky numerics under autocast in _test_*_model harnesses.
# This may be caused by the harness environment (e.g. num classes, input initialization
# via torch.rand), and does not prove autocast is unsuitable when training with real data
# (autocast has been used successfully with real data for some of these models).
# TODO: investigate why autocast numerics are flaky in the harnesses.
#
# For the following models, _test_*_model harnesses skip numerical checks on outputs when
# trying autocast. However, they still try an autocasted forward pass, so they still ensure
# autocast coverage suffices to prevent dtype errors in each model.
autocast_flaky_numerics = (
"inception_v3",
"resnet101",
"resnet152",
"wide_resnet101_2",
"deeplabv3_resnet50",
"deeplabv3_resnet101",
"deeplabv3_mobilenet_v3_large",
"fcn_resnet50",
"fcn_resnet101",
"lraspp_mobilenet_v3_large",
"maskrcnn_resnet50_fpn",
)
# The tests for the following quantized models are flaky possibly due to inconsistent
# rounding errors in different platforms. For this reason the input/output consistency
# tests under test_quantized_classification_model will be skipped for the following models.
quantized_flaky_models = ("inception_v3", "resnet50")
# The following contains configuration parameters for all models which are used by
# the _test_*_model methods.
_model_params = {
"inception_v3": {"input_shape": (1, 3, 299, 299)},
"retinanet_resnet50_fpn": {
"num_classes": 20,
"score_thresh": 0.01,
"min_size": 224,
"max_size": 224,
"input_shape": (3, 224, 224),
},
"keypointrcnn_resnet50_fpn": {
"num_classes": 2,
"min_size": 224,
"max_size": 224,
"box_score_thresh": 0.15,
"input_shape": (3, 224, 224),
},
"fasterrcnn_resnet50_fpn": {
"num_classes": 20,
"min_size": 224,
"max_size": 224,
"input_shape": (3, 224, 224),
},
"fcos_resnet50_fpn": {
"num_classes": 2,
"score_thresh": 0.05,
"min_size": 224,
"max_size": 224,
"input_shape": (3, 224, 224),
},
"maskrcnn_resnet50_fpn": {
"num_classes": 10,
"min_size": 224,
"max_size": 224,
"input_shape": (3, 224, 224),
},
"fasterrcnn_mobilenet_v3_large_fpn": {
"box_score_thresh": 0.02076,
},
"fasterrcnn_mobilenet_v3_large_320_fpn": {
"box_score_thresh": 0.02076,
"rpn_pre_nms_top_n_test": 1000,
"rpn_post_nms_top_n_test": 1000,
},
}
# speeding up slow models:
slow_models = [
"convnext_base",
"convnext_large",
"resnext101_32x8d",
"wide_resnet101_2",
"efficientnet_b6",
"efficientnet_b7",
"efficientnet_v2_m",
"efficientnet_v2_l",
"regnet_y_16gf",
"regnet_y_32gf",
"regnet_y_128gf",
"regnet_x_16gf",
"regnet_x_32gf",
]
for m in slow_models:
_model_params[m] = {"input_shape": (1, 3, 64, 64)}
# The following contains configuration and expected values to be used tests that are model specific
_model_tests_values = {
"retinanet_resnet50_fpn": {
"max_trainable": 5,
"n_trn_params_per_layer": [36, 46, 65, 78, 88, 89],
},
"keypointrcnn_resnet50_fpn": {
"max_trainable": 5,
"n_trn_params_per_layer": [48, 58, 77, 90, 100, 101],
},
"fasterrcnn_resnet50_fpn": {
"max_trainable": 5,
"n_trn_params_per_layer": [30, 40, 59, 72, 82, 83],
},
"maskrcnn_resnet50_fpn": {
"max_trainable": 5,
"n_trn_params_per_layer": [42, 52, 71, 84, 94, 95],
},
"fasterrcnn_mobilenet_v3_large_fpn": {
"max_trainable": 6,
"n_trn_params_per_layer": [22, 23, 44, 70, 91, 97, 100],
},
"fasterrcnn_mobilenet_v3_large_320_fpn": {
"max_trainable": 6,
"n_trn_params_per_layer": [22, 23, 44, 70, 91, 97, 100],
},
"ssd300_vgg16": {
"max_trainable": 5,
"n_trn_params_per_layer": [45, 51, 57, 63, 67, 71],
},
"ssdlite320_mobilenet_v3_large": {
"max_trainable": 6,
"n_trn_params_per_layer": [96, 99, 138, 200, 239, 257, 266],
},
"fcos_resnet50_fpn": {
"max_trainable": 5,
"n_trn_params_per_layer": [54, 64, 83, 96, 106, 107],
},
}
def _make_sliced_model(model, stop_layer):
layers = OrderedDict()
for name, layer in model.named_children():
layers[name] = layer
if name == stop_layer:
break
new_model = torch.nn.Sequential(layers)
return new_model
@pytest.mark.parametrize("model_fn", [models.densenet121, models.densenet169, models.densenet201, models.densenet161])
def test_memory_efficient_densenet(model_fn):
input_shape = (1, 3, 300, 300)
x = torch.rand(input_shape)
model1 = model_fn(num_classes=50, memory_efficient=True)
params = model1.state_dict()
num_params = sum(x.numel() for x in model1.parameters())
model1.eval()
out1 = model1(x)
out1.sum().backward()
num_grad = sum(x.grad.numel() for x in model1.parameters() if x.grad is not None)
model2 = model_fn(num_classes=50, memory_efficient=False)
model2.load_state_dict(params)
model2.eval()
out2 = model2(x)
assert num_params == num_grad
torch.testing.assert_close(out1, out2, rtol=0.0, atol=1e-5)
_check_input_backprop(model1, x)
_check_input_backprop(model2, x)
@pytest.mark.parametrize("dilate_layer_2", (True, False))
@pytest.mark.parametrize("dilate_layer_3", (True, False))
@pytest.mark.parametrize("dilate_layer_4", (True, False))
def test_resnet_dilation(dilate_layer_2, dilate_layer_3, dilate_layer_4):
# TODO improve tests to also check that each layer has the right dimensionality
model = models.resnet50(replace_stride_with_dilation=(dilate_layer_2, dilate_layer_3, dilate_layer_4))
model = _make_sliced_model(model, stop_layer="layer4")
model.eval()
x = torch.rand(1, 3, 224, 224)
out = model(x)
f = 2 ** sum((dilate_layer_2, dilate_layer_3, dilate_layer_4))
assert out.shape == (1, 2048, 7 * f, 7 * f)
def test_mobilenet_v2_residual_setting():
model = models.mobilenet_v2(inverted_residual_setting=[[1, 16, 1, 1], [6, 24, 2, 2]])
model.eval()
x = torch.rand(1, 3, 224, 224)
out = model(x)
assert out.shape[-1] == 1000
@pytest.mark.parametrize("model_fn", [models.mobilenet_v2, models.mobilenet_v3_large, models.mobilenet_v3_small])
def test_mobilenet_norm_layer(model_fn):
model = model_fn()
assert any(isinstance(x, nn.BatchNorm2d) for x in model.modules())
def get_gn(num_channels):
return nn.GroupNorm(1, num_channels)
model = model_fn(norm_layer=get_gn)
assert not (any(isinstance(x, nn.BatchNorm2d) for x in model.modules()))
assert any(isinstance(x, nn.GroupNorm) for x in model.modules())
def test_inception_v3_eval():
kwargs = {}
kwargs["transform_input"] = True
kwargs["aux_logits"] = True
kwargs["init_weights"] = False
name = "inception_v3"
model = models.Inception3(**kwargs)
model.aux_logits = False
model.AuxLogits = None
model = model.eval()
x = torch.rand(1, 3, 299, 299)
_check_jit_scriptable(model, (x,), unwrapper=script_model_unwrapper.get(name, None))
_check_input_backprop(model, x)
def test_fasterrcnn_double():
model = models.detection.fasterrcnn_resnet50_fpn(num_classes=50, weights=None, weights_backbone=None)
model.double()
model.eval()
input_shape = (3, 300, 300)
x = torch.rand(input_shape, dtype=torch.float64)
model_input = [x]
out = model(model_input)
assert model_input[0] is x
assert len(out) == 1
assert "boxes" in out[0]
assert "scores" in out[0]
assert "labels" in out[0]
_check_input_backprop(model, model_input)
def test_googlenet_eval():
kwargs = {}
kwargs["transform_input"] = True
kwargs["aux_logits"] = True
kwargs["init_weights"] = False
name = "googlenet"
model = models.GoogLeNet(**kwargs)
model.aux_logits = False
model.aux1 = None
model.aux2 = None
model = model.eval()
x = torch.rand(1, 3, 224, 224)
_check_jit_scriptable(model, (x,), unwrapper=script_model_unwrapper.get(name, None))
_check_input_backprop(model, x)
@needs_cuda
def test_fasterrcnn_switch_devices():
def checkOut(out):
assert len(out) == 1
assert "boxes" in out[0]
assert "scores" in out[0]
assert "labels" in out[0]
model = models.detection.fasterrcnn_resnet50_fpn(num_classes=50, weights=None, weights_backbone=None)
model.cuda()
model.eval()
input_shape = (3, 300, 300)
x = torch.rand(input_shape, device="cuda")
model_input = [x]
out = model(model_input)
assert model_input[0] is x
checkOut(out)
with torch.cuda.amp.autocast():
out = model(model_input)
checkOut(out)
_check_input_backprop(model, model_input)
# now switch to cpu and make sure it works
model.cpu()
x = x.cpu()
out_cpu = model([x])
checkOut(out_cpu)
_check_input_backprop(model, [x])
def test_generalizedrcnn_transform_repr():
min_size, max_size = 224, 299
image_mean = [0.485, 0.456, 0.406]
image_std = [0.229, 0.224, 0.225]
t = models.detection.transform.GeneralizedRCNNTransform(
min_size=min_size, max_size=max_size, image_mean=image_mean, image_std=image_std
)
# Check integrity of object __repr__ attribute
expected_string = "GeneralizedRCNNTransform("
_indent = "\n "
expected_string += f"{_indent}Normalize(mean={image_mean}, std={image_std})"
expected_string += f"{_indent}Resize(min_size=({min_size},), max_size={max_size}, "
expected_string += "mode='bilinear')\n)"
assert t.__repr__() == expected_string
test_vit_conv_stem_configs = [
models.vision_transformer.ConvStemConfig(kernel_size=3, stride=2, out_channels=64),
models.vision_transformer.ConvStemConfig(kernel_size=3, stride=2, out_channels=128),
models.vision_transformer.ConvStemConfig(kernel_size=3, stride=1, out_channels=128),
models.vision_transformer.ConvStemConfig(kernel_size=3, stride=2, out_channels=256),
models.vision_transformer.ConvStemConfig(kernel_size=3, stride=1, out_channels=256),
models.vision_transformer.ConvStemConfig(kernel_size=3, stride=2, out_channels=512),
]
def vitc_b_16(**kwargs: Any):
return models.VisionTransformer(
image_size=224,
patch_size=16,
num_layers=12,
num_heads=12,
hidden_dim=768,
mlp_dim=3072,
conv_stem_configs=test_vit_conv_stem_configs,
**kwargs,
)
@pytest.mark.parametrize("model_fn", [vitc_b_16])
@pytest.mark.parametrize("dev", cpu_and_gpu())
def test_vitc_models(model_fn, dev):
test_classification_model(model_fn, dev)
@pytest.mark.parametrize("model_fn", get_models_from_module(models))
@pytest.mark.parametrize("dev", cpu_and_gpu())
def test_classification_model(model_fn, dev):
set_rng_seed(0)
defaults = {
"num_classes": 50,
"input_shape": (1, 3, 224, 224),
}
model_name = model_fn.__name__
kwargs = {**defaults, **_model_params.get(model_name, {})}
num_classes = kwargs.get("num_classes")
input_shape = kwargs.pop("input_shape")
model = model_fn(**kwargs)
model.eval().to(device=dev)
# RNG always on CPU, to ensure x in cuda tests is bitwise identical to x in cpu tests
x = torch.rand(input_shape).to(device=dev)
out = model(x)
_assert_expected(out.cpu(), model_name, prec=0.1)
assert out.shape[-1] == num_classes
_check_jit_scriptable(model, (x,), unwrapper=script_model_unwrapper.get(model_name, None), eager_out=out)
_check_fx_compatible(model, x, eager_out=out)
if dev == torch.device("cuda"):
with torch.cuda.amp.autocast():
out = model(x)
# See autocast_flaky_numerics comment at top of file.
if model_name not in autocast_flaky_numerics:
_assert_expected(out.cpu(), model_name, prec=0.1)
assert out.shape[-1] == 50
_check_input_backprop(model, x)
@pytest.mark.parametrize("model_fn", get_models_from_module(models.segmentation))
@pytest.mark.parametrize("dev", cpu_and_gpu())
def test_segmentation_model(model_fn, dev):
set_rng_seed(0)
defaults = {
"num_classes": 10,
"weights_backbone": None,
"input_shape": (1, 3, 32, 32),
}
model_name = model_fn.__name__
kwargs = {**defaults, **_model_params.get(model_name, {})}
input_shape = kwargs.pop("input_shape")
model = model_fn(**kwargs)
model.eval().to(device=dev)
# RNG always on CPU, to ensure x in cuda tests is bitwise identical to x in cpu tests
x = torch.rand(input_shape).to(device=dev)
out = model(x)
def check_out(out):
prec = 0.01
try:
# We first try to assert the entire output if possible. This is not
# only the best way to assert results but also handles the cases
# where we need to create a new expected result.
_assert_expected(out.cpu(), model_name, prec=prec)
except AssertionError:
# Unfortunately some segmentation models are flaky with autocast
# so instead of validating the probability scores, check that the class
# predictions match.
expected_file = _get_expected_file(model_name)
expected = torch.load(expected_file)
torch.testing.assert_close(out.argmax(dim=1), expected.argmax(dim=1), rtol=prec, atol=prec)
return False # Partial validation performed
return True # Full validation performed
full_validation = check_out(out["out"])
_check_jit_scriptable(model, (x,), unwrapper=script_model_unwrapper.get(model_name, None), eager_out=out)
_check_fx_compatible(model, x, eager_out=out)
if dev == torch.device("cuda"):
with torch.cuda.amp.autocast():
out = model(x)
# See autocast_flaky_numerics comment at top of file.
if model_name not in autocast_flaky_numerics:
full_validation &= check_out(out["out"])
if not full_validation:
msg = (
f"The output of {test_segmentation_model.__name__} could only be partially validated. "
"This is likely due to unit-test flakiness, but you may "
"want to do additional manual checks if you made "
"significant changes to the codebase."
)
warnings.warn(msg, RuntimeWarning)
pytest.skip(msg)
_check_input_backprop(model, x)
@pytest.mark.parametrize("model_fn", get_models_from_module(models.detection))
@pytest.mark.parametrize("dev", cpu_and_gpu())
def test_detection_model(model_fn, dev):
set_rng_seed(0)
defaults = {
"num_classes": 50,
"weights_backbone": None,
"input_shape": (3, 300, 300),
}
model_name = model_fn.__name__
kwargs = {**defaults, **_model_params.get(model_name, {})}
input_shape = kwargs.pop("input_shape")
model = model_fn(**kwargs)
model.eval().to(device=dev)
# RNG always on CPU, to ensure x in cuda tests is bitwise identical to x in cpu tests
x = torch.rand(input_shape).to(device=dev)
model_input = [x]
out = model(model_input)
assert model_input[0] is x
def check_out(out):
assert len(out) == 1
def compact(tensor):
tensor = tensor.cpu()
size = tensor.size()
elements_per_sample = functools.reduce(operator.mul, size[1:], 1)
if elements_per_sample > 30:
return compute_mean_std(tensor)
else:
return subsample_tensor(tensor)
def subsample_tensor(tensor):
num_elems = tensor.size(0)
num_samples = 20
if num_elems <= num_samples:
return tensor
ith_index = num_elems // num_samples
return tensor[ith_index - 1 :: ith_index]
def compute_mean_std(tensor):
# can't compute mean of integral tensor
tensor = tensor.to(torch.double)
mean = torch.mean(tensor)
std = torch.std(tensor)
return {"mean": mean, "std": std}
output = map_nested_tensor_object(out, tensor_map_fn=compact)
prec = 0.01
try:
# We first try to assert the entire output if possible. This is not
# only the best way to assert results but also handles the cases
# where we need to create a new expected result.
_assert_expected(output, model_name, prec=prec)
except AssertionError:
# Unfortunately detection models are flaky due to the unstable sort
# in NMS. If matching across all outputs fails, use the same approach
# as in NMSTester.test_nms_cuda to see if this is caused by duplicate
# scores.
expected_file = _get_expected_file(model_name)
expected = torch.load(expected_file)
torch.testing.assert_close(
output[0]["scores"], expected[0]["scores"], rtol=prec, atol=prec, check_device=False, check_dtype=False
)
# Note: Fmassa proposed turning off NMS by adapting the threshold
# and then using the Hungarian algorithm as in DETR to find the
# best match between output and expected boxes and eliminate some
# of the flakiness. Worth exploring.
return False # Partial validation performed
return True # Full validation performed
full_validation = check_out(out)
_check_jit_scriptable(model, ([x],), unwrapper=script_model_unwrapper.get(model_name, None), eager_out=out)
if dev == torch.device("cuda"):
with torch.cuda.amp.autocast():
out = model(model_input)
# See autocast_flaky_numerics comment at top of file.
if model_name not in autocast_flaky_numerics:
full_validation &= check_out(out)
if not full_validation:
msg = (
f"The output of {test_detection_model.__name__} could only be partially validated. "
"This is likely due to unit-test flakiness, but you may "
"want to do additional manual checks if you made "
"significant changes to the codebase."
)
warnings.warn(msg, RuntimeWarning)
pytest.skip(msg)
_check_input_backprop(model, model_input)
@pytest.mark.parametrize("model_fn", get_models_from_module(models.detection))
def test_detection_model_validation(model_fn):
set_rng_seed(0)
model = model_fn(num_classes=50, weights=None, weights_backbone=None)
input_shape = (3, 300, 300)
x = [torch.rand(input_shape)]
# validate that targets are present in training
with pytest.raises(AssertionError):
model(x)
# validate type
targets = [{"boxes": 0.0}]
with pytest.raises(AssertionError):
model(x, targets=targets)
# validate boxes shape
for boxes in (torch.rand((4,)), torch.rand((1, 5))):
targets = [{"boxes": boxes}]
with pytest.raises(AssertionError):
model(x, targets=targets)
# validate that no degenerate boxes are present
boxes = torch.tensor([[1, 3, 1, 4], [2, 4, 3, 4]])
targets = [{"boxes": boxes}]
with pytest.raises(AssertionError):
model(x, targets=targets)
@pytest.mark.parametrize("model_fn", get_models_from_module(models.video))
@pytest.mark.parametrize("dev", cpu_and_gpu())
def test_video_model(model_fn, dev):
# the default input shape is
# bs * num_channels * clip_len * h *w
input_shape = (1, 3, 4, 112, 112)
model_name = model_fn.__name__
# test both basicblock and Bottleneck
model = model_fn(num_classes=50)
model.eval().to(device=dev)
# RNG always on CPU, to ensure x in cuda tests is bitwise identical to x in cpu tests
x = torch.rand(input_shape).to(device=dev)
out = model(x)
_check_jit_scriptable(model, (x,), unwrapper=script_model_unwrapper.get(model_name, None), eager_out=out)
_check_fx_compatible(model, x, eager_out=out)
assert out.shape[-1] == 50
if dev == torch.device("cuda"):
with torch.cuda.amp.autocast():
out = model(x)
assert out.shape[-1] == 50
_check_input_backprop(model, x)
@pytest.mark.skipif(
not (
"fbgemm" in torch.backends.quantized.supported_engines
and "qnnpack" in torch.backends.quantized.supported_engines
),
reason="This Pytorch Build has not been built with fbgemm and qnnpack",
)
@pytest.mark.parametrize("model_fn", get_models_from_module(models.quantization))
def test_quantized_classification_model(model_fn):
set_rng_seed(0)
defaults = {
"num_classes": 5,
"input_shape": (1, 3, 224, 224),
"quantize": True,
}
model_name = model_fn.__name__
kwargs = {**defaults, **_model_params.get(model_name, {})}
input_shape = kwargs.pop("input_shape")
# First check if quantize=True provides models that can run with input data
model = model_fn(**kwargs)
model.eval()
x = torch.rand(input_shape)
out = model(x)
if model_name not in quantized_flaky_models:
_assert_expected(out, model_name + "_quantized", prec=0.1)
assert out.shape[-1] == 5
_check_jit_scriptable(model, (x,), unwrapper=script_model_unwrapper.get(model_name, None), eager_out=out)
_check_fx_compatible(model, x, eager_out=out)
else:
try:
torch.jit.script(model)
except Exception as e:
raise AssertionError("model cannot be scripted.") from e
kwargs["quantize"] = False
for eval_mode in [True, False]:
model = model_fn(**kwargs)
if eval_mode:
model.eval()
model.qconfig = torch.ao.quantization.default_qconfig
else:
model.train()
model.qconfig = torch.ao.quantization.default_qat_qconfig
model.fuse_model(is_qat=not eval_mode)
if eval_mode:
torch.ao.quantization.prepare(model, inplace=True)
else:
torch.ao.quantization.prepare_qat(model, inplace=True)
model.eval()
torch.ao.quantization.convert(model, inplace=True)
@pytest.mark.parametrize("model_fn", get_models_from_module(models.detection))
def test_detection_model_trainable_backbone_layers(model_fn, disable_weight_loading):
model_name = model_fn.__name__
max_trainable = _model_tests_values[model_name]["max_trainable"]
n_trainable_params = []
for trainable_layers in range(0, max_trainable + 1):
model = model_fn(weights=None, weights_backbone="DEFAULT", trainable_backbone_layers=trainable_layers)
n_trainable_params.append(len([p for p in model.parameters() if p.requires_grad]))
assert n_trainable_params == _model_tests_values[model_name]["n_trn_params_per_layer"]
@needs_cuda
@pytest.mark.parametrize("model_builder", (models.optical_flow.raft_large, models.optical_flow.raft_small))
@pytest.mark.parametrize("scripted", (False, True))
def test_raft(model_builder, scripted):
torch.manual_seed(0)
# We need very small images, otherwise the pickle size would exceed the 50KB
# As a resut we need to override the correlation pyramid to not downsample
# too much, otherwise we would get nan values (effective H and W would be
# reduced to 1)
corr_block = models.optical_flow.raft.CorrBlock(num_levels=2, radius=2)
model = model_builder(corr_block=corr_block).eval().to("cuda")
if scripted:
model = torch.jit.script(model)
bs = 1
img1 = torch.rand(bs, 3, 80, 72).cuda()
img2 = torch.rand(bs, 3, 80, 72).cuda()
preds = model(img1, img2)
flow_pred = preds[-1]
# Tolerance is fairly high, but there are 2 * H * W outputs to check
# The .pkl were generated on the AWS cluter, on the CI it looks like the resuts are slightly different
_assert_expected(flow_pred, name=model_builder.__name__, atol=1e-2, rtol=1)
if __name__ == "__main__":
pytest.main([__file__])