-
Notifications
You must be signed in to change notification settings - Fork 7k
/
_meta.py
280 lines (214 loc) · 10.4 KB
/
_meta.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
from typing import List, Optional, Tuple, Union
import PIL.Image
import torch
from torchvision import datapoints
from torchvision.datapoints import BoundingBoxFormat
from torchvision.transforms import _functional_pil as _FP
from torchvision.utils import _log_api_usage_once
from ._utils import is_simple_tensor
def get_dimensions_image_tensor(image: torch.Tensor) -> List[int]:
chw = list(image.shape[-3:])
ndims = len(chw)
if ndims == 3:
return chw
elif ndims == 2:
chw.insert(0, 1)
return chw
else:
raise TypeError(f"Input tensor should have at least two dimensions, but got {ndims}")
get_dimensions_image_pil = _FP.get_dimensions
def get_dimensions(inpt: Union[datapoints._ImageTypeJIT, datapoints._VideoTypeJIT]) -> List[int]:
if not torch.jit.is_scripting():
_log_api_usage_once(get_dimensions)
if torch.jit.is_scripting() or is_simple_tensor(inpt):
return get_dimensions_image_tensor(inpt)
elif isinstance(inpt, (datapoints.Image, datapoints.Video)):
channels = inpt.num_channels
height, width = inpt.spatial_size
return [channels, height, width]
elif isinstance(inpt, PIL.Image.Image):
return get_dimensions_image_pil(inpt)
else:
raise TypeError(
f"Input can either be a plain tensor, an `Image` or `Video` datapoint, or a PIL image, "
f"but got {type(inpt)} instead."
)
def get_num_channels_image_tensor(image: torch.Tensor) -> int:
chw = image.shape[-3:]
ndims = len(chw)
if ndims == 3:
return chw[0]
elif ndims == 2:
return 1
else:
raise TypeError(f"Input tensor should have at least two dimensions, but got {ndims}")
get_num_channels_image_pil = _FP.get_image_num_channels
def get_num_channels_video(video: torch.Tensor) -> int:
return get_num_channels_image_tensor(video)
def get_num_channels(inpt: Union[datapoints._ImageTypeJIT, datapoints._VideoTypeJIT]) -> int:
if not torch.jit.is_scripting():
_log_api_usage_once(get_num_channels)
if torch.jit.is_scripting() or is_simple_tensor(inpt):
return get_num_channels_image_tensor(inpt)
elif isinstance(inpt, (datapoints.Image, datapoints.Video)):
return inpt.num_channels
elif isinstance(inpt, PIL.Image.Image):
return get_num_channels_image_pil(inpt)
else:
raise TypeError(
f"Input can either be a plain tensor, an `Image` or `Video` datapoint, or a PIL image, "
f"but got {type(inpt)} instead."
)
# We changed the names to ensure it can be used not only for images but also videos. Thus, we just alias it without
# deprecating the old names.
get_image_num_channels = get_num_channels
def get_spatial_size_image_tensor(image: torch.Tensor) -> List[int]:
hw = list(image.shape[-2:])
ndims = len(hw)
if ndims == 2:
return hw
else:
raise TypeError(f"Input tensor should have at least two dimensions, but got {ndims}")
@torch.jit.unused
def get_spatial_size_image_pil(image: PIL.Image.Image) -> List[int]:
width, height = _FP.get_image_size(image)
return [height, width]
def get_spatial_size_video(video: torch.Tensor) -> List[int]:
return get_spatial_size_image_tensor(video)
def get_spatial_size_mask(mask: torch.Tensor) -> List[int]:
return get_spatial_size_image_tensor(mask)
@torch.jit.unused
def get_spatial_size_bounding_box(bounding_box: datapoints.BoundingBox) -> List[int]:
return list(bounding_box.spatial_size)
def get_spatial_size(inpt: datapoints._InputTypeJIT) -> List[int]:
if not torch.jit.is_scripting():
_log_api_usage_once(get_spatial_size)
if torch.jit.is_scripting() or is_simple_tensor(inpt):
return get_spatial_size_image_tensor(inpt)
elif isinstance(inpt, (datapoints.Image, datapoints.Video, datapoints.BoundingBox, datapoints.Mask)):
return list(inpt.spatial_size)
elif isinstance(inpt, PIL.Image.Image):
return get_spatial_size_image_pil(inpt)
else:
raise TypeError(
f"Input can either be a plain tensor, any TorchVision datapoint, or a PIL image, "
f"but got {type(inpt)} instead."
)
def get_num_frames_video(video: torch.Tensor) -> int:
return video.shape[-4]
def get_num_frames(inpt: datapoints._VideoTypeJIT) -> int:
if not torch.jit.is_scripting():
_log_api_usage_once(get_num_frames)
if torch.jit.is_scripting() or is_simple_tensor(inpt):
return get_num_frames_video(inpt)
elif isinstance(inpt, datapoints.Video):
return inpt.num_frames
else:
raise TypeError(f"Input can either be a plain tensor or a `Video` datapoint, but got {type(inpt)} instead.")
def _xywh_to_xyxy(xywh: torch.Tensor, inplace: bool) -> torch.Tensor:
xyxy = xywh if inplace else xywh.clone()
xyxy[..., 2:] += xyxy[..., :2]
return xyxy
def _xyxy_to_xywh(xyxy: torch.Tensor, inplace: bool) -> torch.Tensor:
xywh = xyxy if inplace else xyxy.clone()
xywh[..., 2:] -= xywh[..., :2]
return xywh
def _cxcywh_to_xyxy(cxcywh: torch.Tensor, inplace: bool) -> torch.Tensor:
if not inplace:
cxcywh = cxcywh.clone()
# Trick to do fast division by 2 and ceil, without casting. It produces the same result as
# `torchvision.ops._box_convert._box_cxcywh_to_xyxy`.
half_wh = cxcywh[..., 2:].div(-2, rounding_mode=None if cxcywh.is_floating_point() else "floor").abs_()
# (cx - width / 2) = x1, same for y1
cxcywh[..., :2].sub_(half_wh)
# (x1 + width) = x2, same for y2
cxcywh[..., 2:].add_(cxcywh[..., :2])
return cxcywh
def _xyxy_to_cxcywh(xyxy: torch.Tensor, inplace: bool) -> torch.Tensor:
if not inplace:
xyxy = xyxy.clone()
# (x2 - x1) = width, same for height
xyxy[..., 2:].sub_(xyxy[..., :2])
# (x1 * 2 + width) / 2 = x1 + width / 2 = x1 + (x2-x1)/2 = (x1 + x2)/2 = cx, same for cy
xyxy[..., :2].mul_(2).add_(xyxy[..., 2:]).div_(2, rounding_mode=None if xyxy.is_floating_point() else "floor")
return xyxy
def _convert_format_bounding_box(
bounding_box: torch.Tensor, old_format: BoundingBoxFormat, new_format: BoundingBoxFormat, inplace: bool = False
) -> torch.Tensor:
if new_format == old_format:
return bounding_box
# TODO: Add _xywh_to_cxcywh and _cxcywh_to_xywh to improve performance
if old_format == BoundingBoxFormat.XYWH:
bounding_box = _xywh_to_xyxy(bounding_box, inplace)
elif old_format == BoundingBoxFormat.CXCYWH:
bounding_box = _cxcywh_to_xyxy(bounding_box, inplace)
if new_format == BoundingBoxFormat.XYWH:
bounding_box = _xyxy_to_xywh(bounding_box, inplace)
elif new_format == BoundingBoxFormat.CXCYWH:
bounding_box = _xyxy_to_cxcywh(bounding_box, inplace)
return bounding_box
def convert_format_bounding_box(
inpt: datapoints._InputTypeJIT,
old_format: Optional[BoundingBoxFormat] = None,
new_format: Optional[BoundingBoxFormat] = None,
inplace: bool = False,
) -> datapoints._InputTypeJIT:
# This being a kernel / dispatcher hybrid, we need an option to pass `old_format` explicitly for simple tensor
# inputs as well as extract it from `datapoints.BoundingBox` inputs. However, putting a default value on
# `old_format` means we also need to put one on `new_format` to have syntactically correct Python. Here we mimic the
# default error that would be thrown if `new_format` had no default value.
if new_format is None:
raise TypeError("convert_format_bounding_box() missing 1 required argument: 'new_format'")
if not torch.jit.is_scripting():
_log_api_usage_once(convert_format_bounding_box)
if torch.jit.is_scripting() or is_simple_tensor(inpt):
if old_format is None:
raise ValueError("For simple tensor inputs, `old_format` has to be passed.")
return _convert_format_bounding_box(inpt, old_format=old_format, new_format=new_format, inplace=inplace)
elif isinstance(inpt, datapoints.BoundingBox):
if old_format is not None:
raise ValueError("For bounding box datapoint inputs, `old_format` must not be passed.")
output = _convert_format_bounding_box(
inpt.as_subclass(torch.Tensor), old_format=inpt.format, new_format=new_format, inplace=inplace
)
return datapoints.BoundingBox.wrap_like(inpt, output, format=new_format)
else:
raise TypeError(
f"Input can either be a plain tensor or a bounding box datapoint, but got {type(inpt)} instead."
)
def _clamp_bounding_box(
bounding_box: torch.Tensor, format: BoundingBoxFormat, spatial_size: Tuple[int, int]
) -> torch.Tensor:
# TODO: Investigate if it makes sense from a performance perspective to have an implementation for every
# BoundingBoxFormat instead of converting back and forth
in_dtype = bounding_box.dtype
bounding_box = bounding_box.clone() if bounding_box.is_floating_point() else bounding_box.float()
xyxy_boxes = convert_format_bounding_box(
bounding_box, old_format=format, new_format=datapoints.BoundingBoxFormat.XYXY, inplace=True
)
xyxy_boxes[..., 0::2].clamp_(min=0, max=spatial_size[1])
xyxy_boxes[..., 1::2].clamp_(min=0, max=spatial_size[0])
out_boxes = convert_format_bounding_box(
xyxy_boxes, old_format=BoundingBoxFormat.XYXY, new_format=format, inplace=True
)
return out_boxes.to(in_dtype)
def clamp_bounding_box(
inpt: datapoints._InputTypeJIT,
format: Optional[BoundingBoxFormat] = None,
spatial_size: Optional[Tuple[int, int]] = None,
) -> datapoints._InputTypeJIT:
if not torch.jit.is_scripting():
_log_api_usage_once(clamp_bounding_box)
if torch.jit.is_scripting() or is_simple_tensor(inpt):
if format is None or spatial_size is None:
raise ValueError("For simple tensor inputs, `format` and `spatial_size` has to be passed.")
return _clamp_bounding_box(inpt, format=format, spatial_size=spatial_size)
elif isinstance(inpt, datapoints.BoundingBox):
if format is not None or spatial_size is not None:
raise ValueError("For bounding box datapoint inputs, `format` and `spatial_size` must not be passed.")
output = _clamp_bounding_box(inpt.as_subclass(torch.Tensor), format=inpt.format, spatial_size=inpt.spatial_size)
return datapoints.BoundingBox.wrap_like(inpt, output)
else:
raise TypeError(
f"Input can either be a plain tensor or a bounding box datapoint, but got {type(inpt)} instead."
)