-
Notifications
You must be signed in to change notification settings - Fork 7k
/
backbone_utils.py
244 lines (213 loc) · 10.3 KB
/
backbone_utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
import warnings
from typing import Callable, Dict, List, Optional, Union
from torch import nn, Tensor
from torchvision.ops import misc as misc_nn_ops
from torchvision.ops.feature_pyramid_network import ExtraFPNBlock, FeaturePyramidNetwork, LastLevelMaxPool
from .. import mobilenet, resnet
from .._api import _get_enum_from_fn, WeightsEnum
from .._utils import handle_legacy_interface, IntermediateLayerGetter
class BackboneWithFPN(nn.Module):
"""
Adds a FPN on top of a model.
Internally, it uses torchvision.models._utils.IntermediateLayerGetter to
extract a submodel that returns the feature maps specified in return_layers.
The same limitations of IntermediateLayerGetter apply here.
Args:
backbone (nn.Module)
return_layers (Dict[name, new_name]): a dict containing the names
of the modules for which the activations will be returned as
the key of the dict, and the value of the dict is the name
of the returned activation (which the user can specify).
in_channels_list (List[int]): number of channels for each feature map
that is returned, in the order they are present in the OrderedDict
out_channels (int): number of channels in the FPN.
norm_layer (callable, optional): Module specifying the normalization layer to use. Default: None
Attributes:
out_channels (int): the number of channels in the FPN
"""
def __init__(
self,
backbone: nn.Module,
return_layers: Dict[str, str],
in_channels_list: List[int],
out_channels: int,
extra_blocks: Optional[ExtraFPNBlock] = None,
norm_layer: Optional[Callable[..., nn.Module]] = None,
) -> None:
super().__init__()
if extra_blocks is None:
extra_blocks = LastLevelMaxPool()
self.body = IntermediateLayerGetter(backbone, return_layers=return_layers)
self.fpn = FeaturePyramidNetwork(
in_channels_list=in_channels_list,
out_channels=out_channels,
extra_blocks=extra_blocks,
norm_layer=norm_layer,
)
self.out_channels = out_channels
def forward(self, x: Tensor) -> Dict[str, Tensor]:
x = self.body(x)
x = self.fpn(x)
return x
@handle_legacy_interface(
weights=(
"pretrained",
lambda kwargs: _get_enum_from_fn(resnet.__dict__[kwargs["backbone_name"]])["IMAGENET1K_V1"],
),
)
def resnet_fpn_backbone(
*,
backbone_name: str,
weights: Optional[WeightsEnum],
norm_layer: Callable[..., nn.Module] = misc_nn_ops.FrozenBatchNorm2d,
trainable_layers: int = 3,
returned_layers: Optional[List[int]] = None,
extra_blocks: Optional[ExtraFPNBlock] = None,
) -> BackboneWithFPN:
"""
Constructs a specified ResNet backbone with FPN on top. Freezes the specified number of layers in the backbone.
Examples::
>>> import torch
>>> from torchvision.models import ResNet50_Weights
>>> from torchvision.models.detection.backbone_utils import resnet_fpn_backbone
>>> backbone = resnet_fpn_backbone(backbone_name='resnet50', weights=ResNet50_Weights.DEFAULT, trainable_layers=3)
>>> # get some dummy image
>>> x = torch.rand(1,3,64,64)
>>> # compute the output
>>> output = backbone(x)
>>> print([(k, v.shape) for k, v in output.items()])
>>> # returns
>>> [('0', torch.Size([1, 256, 16, 16])),
>>> ('1', torch.Size([1, 256, 8, 8])),
>>> ('2', torch.Size([1, 256, 4, 4])),
>>> ('3', torch.Size([1, 256, 2, 2])),
>>> ('pool', torch.Size([1, 256, 1, 1]))]
Args:
backbone_name (string): resnet architecture. Possible values are 'resnet18', 'resnet34', 'resnet50',
'resnet101', 'resnet152', 'resnext50_32x4d', 'resnext101_32x8d', 'wide_resnet50_2', 'wide_resnet101_2'
weights (WeightsEnum, optional): The pretrained weights for the model
norm_layer (callable): it is recommended to use the default value. For details visit:
(https://github.com/facebookresearch/maskrcnn-benchmark/issues/267)
trainable_layers (int): number of trainable (not frozen) layers starting from final block.
Valid values are between 0 and 5, with 5 meaning all backbone layers are trainable.
returned_layers (list of int): The layers of the network to return. Each entry must be in ``[1, 4]``.
By default, all layers are returned.
extra_blocks (ExtraFPNBlock or None): if provided, extra operations will
be performed. It is expected to take the fpn features, the original
features and the names of the original features as input, and returns
a new list of feature maps and their corresponding names. By
default, a ``LastLevelMaxPool`` is used.
"""
backbone = resnet.__dict__[backbone_name](weights=weights, norm_layer=norm_layer)
return _resnet_fpn_extractor(backbone, trainable_layers, returned_layers, extra_blocks)
def _resnet_fpn_extractor(
backbone: resnet.ResNet,
trainable_layers: int,
returned_layers: Optional[List[int]] = None,
extra_blocks: Optional[ExtraFPNBlock] = None,
norm_layer: Optional[Callable[..., nn.Module]] = None,
) -> BackboneWithFPN:
# select layers that won't be frozen
if trainable_layers < 0 or trainable_layers > 5:
raise ValueError(f"Trainable layers should be in the range [0,5], got {trainable_layers}")
layers_to_train = ["layer4", "layer3", "layer2", "layer1", "conv1"][:trainable_layers]
if trainable_layers == 5:
layers_to_train.append("bn1")
for name, parameter in backbone.named_parameters():
if all([not name.startswith(layer) for layer in layers_to_train]):
parameter.requires_grad_(False)
if extra_blocks is None:
extra_blocks = LastLevelMaxPool()
if returned_layers is None:
returned_layers = [1, 2, 3, 4]
if min(returned_layers) <= 0 or max(returned_layers) >= 5:
raise ValueError(f"Each returned layer should be in the range [1,4]. Got {returned_layers}")
return_layers = {f"layer{k}": str(v) for v, k in enumerate(returned_layers)}
in_channels_stage2 = backbone.inplanes // 8
in_channels_list = [in_channels_stage2 * 2 ** (i - 1) for i in returned_layers]
out_channels = 256
return BackboneWithFPN(
backbone, return_layers, in_channels_list, out_channels, extra_blocks=extra_blocks, norm_layer=norm_layer
)
def _validate_trainable_layers(
is_trained: bool,
trainable_backbone_layers: Optional[int],
max_value: int,
default_value: int,
) -> int:
# don't freeze any layers if pretrained model or backbone is not used
if not is_trained:
if trainable_backbone_layers is not None:
warnings.warn(
"Changing trainable_backbone_layers has no effect if "
"neither pretrained nor pretrained_backbone have been set to True, "
f"falling back to trainable_backbone_layers={max_value} so that all layers are trainable"
)
trainable_backbone_layers = max_value
# by default freeze first blocks
if trainable_backbone_layers is None:
trainable_backbone_layers = default_value
if trainable_backbone_layers < 0 or trainable_backbone_layers > max_value:
raise ValueError(
f"Trainable backbone layers should be in the range [0,{max_value}], got {trainable_backbone_layers} "
)
return trainable_backbone_layers
@handle_legacy_interface(
weights=(
"pretrained",
lambda kwargs: _get_enum_from_fn(mobilenet.__dict__[kwargs["backbone_name"]])["IMAGENET1K_V1"],
),
)
def mobilenet_backbone(
*,
backbone_name: str,
weights: Optional[WeightsEnum],
fpn: bool,
norm_layer: Callable[..., nn.Module] = misc_nn_ops.FrozenBatchNorm2d,
trainable_layers: int = 2,
returned_layers: Optional[List[int]] = None,
extra_blocks: Optional[ExtraFPNBlock] = None,
) -> nn.Module:
backbone = mobilenet.__dict__[backbone_name](weights=weights, norm_layer=norm_layer)
return _mobilenet_extractor(backbone, fpn, trainable_layers, returned_layers, extra_blocks)
def _mobilenet_extractor(
backbone: Union[mobilenet.MobileNetV2, mobilenet.MobileNetV3],
fpn: bool,
trainable_layers: int,
returned_layers: Optional[List[int]] = None,
extra_blocks: Optional[ExtraFPNBlock] = None,
norm_layer: Optional[Callable[..., nn.Module]] = None,
) -> nn.Module:
backbone = backbone.features
# Gather the indices of blocks which are strided. These are the locations of C1, ..., Cn-1 blocks.
# The first and last blocks are always included because they are the C0 (conv1) and Cn.
stage_indices = [0] + [i for i, b in enumerate(backbone) if getattr(b, "_is_cn", False)] + [len(backbone) - 1]
num_stages = len(stage_indices)
# find the index of the layer from which we won't freeze
if trainable_layers < 0 or trainable_layers > num_stages:
raise ValueError(f"Trainable layers should be in the range [0,{num_stages}], got {trainable_layers} ")
freeze_before = len(backbone) if trainable_layers == 0 else stage_indices[num_stages - trainable_layers]
for b in backbone[:freeze_before]:
for parameter in b.parameters():
parameter.requires_grad_(False)
out_channels = 256
if fpn:
if extra_blocks is None:
extra_blocks = LastLevelMaxPool()
if returned_layers is None:
returned_layers = [num_stages - 2, num_stages - 1]
if min(returned_layers) < 0 or max(returned_layers) >= num_stages:
raise ValueError(f"Each returned layer should be in the range [0,{num_stages - 1}], got {returned_layers} ")
return_layers = {f"{stage_indices[k]}": str(v) for v, k in enumerate(returned_layers)}
in_channels_list = [backbone[stage_indices[i]].out_channels for i in returned_layers]
return BackboneWithFPN(
backbone, return_layers, in_channels_list, out_channels, extra_blocks=extra_blocks, norm_layer=norm_layer
)
else:
m = nn.Sequential(
backbone,
# depthwise linear combination of channels to reduce their size
nn.Conv2d(backbone[-1].out_channels, out_channels, 1),
)
m.out_channels = out_channels # type: ignore[assignment]
return m