Skip to content

Commit 3d69b2a

Browse files
committed
Update documentation.
1 parent bc27744 commit 3d69b2a

File tree

2 files changed

+23
-3
lines changed

2 files changed

+23
-3
lines changed

docs/source/models.rst

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -301,7 +301,7 @@ We provide pre-trained quantized weights for the following models:
301301
Model Acc@1 Acc@5
302302
================================ ============= =============
303303
MobileNet V2 71.658 90.150
304-
MobileNet V3 Large TODO TODO
304+
MobileNet V3 Large 73.004 90.858
305305
ShuffleNet V2 68.360 87.582
306306
ResNet 18 69.494 88.882
307307
ResNet 50 75.920 92.814

references/classification/README.md

Lines changed: 22 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -101,14 +101,34 @@ For Mobilenet-v2, the model was trained with quantization aware training, the se
101101
9. momentum: 0.9
102102
10. lr_step_size:30
103103
11. lr_gamma: 0.1
104+
12. weight-decay: 0.0001
104105

105106
```
106-
python -m torch.distributed.launch --nproc_per_node=8 --use_env train_quantization.py --model='mobilenetv2'
107+
python -m torch.distributed.launch --nproc_per_node=8 --use_env train_quantization.py --model='mobilenet_v2'
107108
```
108109

109110
Training converges at about 10 epochs.
110111

111-
For post training quant, device is set to CPU. For training, the device is set to CUDA
112+
For Mobilenet-v3 Large, the model was trained with quantization aware training, the settings used are:
113+
1. num_workers: 16
114+
2. batch_size: 32
115+
3. eval_batch_size: 128
116+
4. backend: 'qnnpack'
117+
5. learning-rate: 0.001
118+
6. num_epochs: 90
119+
7. num_observer_update_epochs:4
120+
8. num_batch_norm_update_epochs:3
121+
9. momentum: 0.9
122+
10. lr_step_size:30
123+
11. lr_gamma: 0.1
124+
12. weight-decay: 0.00001
125+
126+
```
127+
python -m torch.distributed.launch --nproc_per_node=8 --use_env train_quantization.py --model='mobilenet_v3_large' \
128+
--wd 0.00001 --lr 0.001
129+
```
130+
131+
For post training quant, device is set to CPU. For training, the device is set to CUDA.
112132

113133
### Command to evaluate quantized models using the pre-trained weights:
114134

0 commit comments

Comments
 (0)