|
| 1 | +import functools |
| 2 | +import itertools |
| 3 | + |
| 4 | +import PIL.Image |
| 5 | +import pytest |
| 6 | + |
| 7 | +import torch |
| 8 | +import torch.testing |
| 9 | +from torch.nn.functional import one_hot |
| 10 | +from torch.testing._comparison import assert_equal as _assert_equal, TensorLikePair |
| 11 | +from torchvision.prototype import features |
| 12 | +from torchvision.prototype.transforms.functional import to_image_tensor |
| 13 | +from torchvision.transforms.functional_tensor import _max_value as get_max_value |
| 14 | + |
| 15 | + |
| 16 | +class ImagePair(TensorLikePair): |
| 17 | + def _process_inputs(self, actual, expected, *, id, allow_subclasses): |
| 18 | + return super()._process_inputs( |
| 19 | + *[to_image_tensor(input) if isinstance(input, PIL.Image.Image) else input for input in [actual, expected]], |
| 20 | + id=id, |
| 21 | + allow_subclasses=allow_subclasses, |
| 22 | + ) |
| 23 | + |
| 24 | + |
| 25 | +assert_equal = functools.partial(_assert_equal, pair_types=[ImagePair], rtol=0, atol=0) |
| 26 | + |
| 27 | + |
| 28 | +class ArgsKwargs: |
| 29 | + def __init__(self, *args, **kwargs): |
| 30 | + self.args = args |
| 31 | + self.kwargs = kwargs |
| 32 | + |
| 33 | + def __iter__(self): |
| 34 | + yield self.args |
| 35 | + yield self.kwargs |
| 36 | + |
| 37 | + def __str__(self): |
| 38 | + def short_repr(obj, max=20): |
| 39 | + repr_ = repr(obj) |
| 40 | + if len(repr_) <= max: |
| 41 | + return repr_ |
| 42 | + |
| 43 | + return f"{repr_[:max//2]}...{repr_[-(max//2-3):]}" |
| 44 | + |
| 45 | + return ", ".join( |
| 46 | + itertools.chain( |
| 47 | + [short_repr(arg) for arg in self.args], |
| 48 | + [f"{param}={short_repr(kwarg)}" for param, kwarg in self.kwargs.items()], |
| 49 | + ) |
| 50 | + ) |
| 51 | + |
| 52 | + |
| 53 | +make_tensor = functools.partial(torch.testing.make_tensor, device="cpu") |
| 54 | + |
| 55 | + |
| 56 | +def make_image(size=None, *, color_space, extra_dims=(), dtype=torch.float32, constant_alpha=True): |
| 57 | + size = size or torch.randint(16, 33, (2,)).tolist() |
| 58 | + |
| 59 | + try: |
| 60 | + num_channels = { |
| 61 | + features.ColorSpace.GRAY: 1, |
| 62 | + features.ColorSpace.GRAY_ALPHA: 2, |
| 63 | + features.ColorSpace.RGB: 3, |
| 64 | + features.ColorSpace.RGB_ALPHA: 4, |
| 65 | + }[color_space] |
| 66 | + except KeyError as error: |
| 67 | + raise pytest.UsageError() from error |
| 68 | + |
| 69 | + shape = (*extra_dims, num_channels, *size) |
| 70 | + max_value = get_max_value(dtype) |
| 71 | + data = make_tensor(shape, low=0, high=max_value, dtype=dtype) |
| 72 | + if color_space in {features.ColorSpace.GRAY_ALPHA, features.ColorSpace.RGB_ALPHA} and constant_alpha: |
| 73 | + data[..., -1, :, :] = max_value |
| 74 | + return features.Image(data, color_space=color_space) |
| 75 | + |
| 76 | + |
| 77 | +make_grayscale_image = functools.partial(make_image, color_space=features.ColorSpace.GRAY) |
| 78 | +make_rgb_image = functools.partial(make_image, color_space=features.ColorSpace.RGB) |
| 79 | + |
| 80 | + |
| 81 | +def make_images( |
| 82 | + sizes=((16, 16), (7, 33), (31, 9)), |
| 83 | + color_spaces=( |
| 84 | + features.ColorSpace.GRAY, |
| 85 | + features.ColorSpace.GRAY_ALPHA, |
| 86 | + features.ColorSpace.RGB, |
| 87 | + features.ColorSpace.RGB_ALPHA, |
| 88 | + ), |
| 89 | + dtypes=(torch.float32, torch.uint8), |
| 90 | + extra_dims=((), (0,), (4,), (2, 3), (5, 0), (0, 5)), |
| 91 | +): |
| 92 | + for size, color_space, dtype in itertools.product(sizes, color_spaces, dtypes): |
| 93 | + yield make_image(size, color_space=color_space, dtype=dtype) |
| 94 | + |
| 95 | + for color_space, dtype, extra_dims_ in itertools.product(color_spaces, dtypes, extra_dims): |
| 96 | + yield make_image(size=sizes[0], color_space=color_space, extra_dims=extra_dims_, dtype=dtype) |
| 97 | + |
| 98 | + |
| 99 | +def randint_with_tensor_bounds(arg1, arg2=None, **kwargs): |
| 100 | + low, high = torch.broadcast_tensors( |
| 101 | + *[torch.as_tensor(arg) for arg in ((0, arg1) if arg2 is None else (arg1, arg2))] |
| 102 | + ) |
| 103 | + return torch.stack( |
| 104 | + [ |
| 105 | + torch.randint(low_scalar, high_scalar, (), **kwargs) |
| 106 | + for low_scalar, high_scalar in zip(low.flatten().tolist(), high.flatten().tolist()) |
| 107 | + ] |
| 108 | + ).reshape(low.shape) |
| 109 | + |
| 110 | + |
| 111 | +def make_bounding_box(*, format, image_size=(32, 32), extra_dims=(), dtype=torch.int64): |
| 112 | + if isinstance(format, str): |
| 113 | + format = features.BoundingBoxFormat[format] |
| 114 | + |
| 115 | + if any(dim == 0 for dim in extra_dims): |
| 116 | + return features.BoundingBox(torch.empty(*extra_dims, 4), format=format, image_size=image_size) |
| 117 | + |
| 118 | + height, width = image_size |
| 119 | + |
| 120 | + if format == features.BoundingBoxFormat.XYXY: |
| 121 | + x1 = torch.randint(0, width // 2, extra_dims) |
| 122 | + y1 = torch.randint(0, height // 2, extra_dims) |
| 123 | + x2 = randint_with_tensor_bounds(x1 + 1, width - x1) + x1 |
| 124 | + y2 = randint_with_tensor_bounds(y1 + 1, height - y1) + y1 |
| 125 | + parts = (x1, y1, x2, y2) |
| 126 | + elif format == features.BoundingBoxFormat.XYWH: |
| 127 | + x = torch.randint(0, width // 2, extra_dims) |
| 128 | + y = torch.randint(0, height // 2, extra_dims) |
| 129 | + w = randint_with_tensor_bounds(1, width - x) |
| 130 | + h = randint_with_tensor_bounds(1, height - y) |
| 131 | + parts = (x, y, w, h) |
| 132 | + elif format == features.BoundingBoxFormat.CXCYWH: |
| 133 | + cx = torch.randint(1, width - 1, ()) |
| 134 | + cy = torch.randint(1, height - 1, ()) |
| 135 | + w = randint_with_tensor_bounds(1, torch.minimum(cx, width - cx) + 1) |
| 136 | + h = randint_with_tensor_bounds(1, torch.minimum(cy, height - cy) + 1) |
| 137 | + parts = (cx, cy, w, h) |
| 138 | + else: |
| 139 | + raise pytest.UsageError() |
| 140 | + |
| 141 | + return features.BoundingBox(torch.stack(parts, dim=-1).to(dtype), format=format, image_size=image_size) |
| 142 | + |
| 143 | + |
| 144 | +make_xyxy_bounding_box = functools.partial(make_bounding_box, format=features.BoundingBoxFormat.XYXY) |
| 145 | + |
| 146 | + |
| 147 | +def make_bounding_boxes( |
| 148 | + formats=(features.BoundingBoxFormat.XYXY, features.BoundingBoxFormat.XYWH, features.BoundingBoxFormat.CXCYWH), |
| 149 | + image_sizes=((32, 32),), |
| 150 | + dtypes=(torch.int64, torch.float32), |
| 151 | + extra_dims=((0,), (), (4,), (2, 3), (5, 0), (0, 5)), |
| 152 | +): |
| 153 | + for format, image_size, dtype in itertools.product(formats, image_sizes, dtypes): |
| 154 | + yield make_bounding_box(format=format, image_size=image_size, dtype=dtype) |
| 155 | + |
| 156 | + for format, extra_dims_ in itertools.product(formats, extra_dims): |
| 157 | + yield make_bounding_box(format=format, extra_dims=extra_dims_) |
| 158 | + |
| 159 | + |
| 160 | +def make_label(size=(), *, categories=("category0", "category1")): |
| 161 | + return features.Label(torch.randint(0, len(categories) if categories else 10, size), categories=categories) |
| 162 | + |
| 163 | + |
| 164 | +def make_one_hot_label(*args, **kwargs): |
| 165 | + label = make_label(*args, **kwargs) |
| 166 | + return features.OneHotLabel(one_hot(label, num_classes=len(label.categories)), categories=label.categories) |
| 167 | + |
| 168 | + |
| 169 | +def make_one_hot_labels( |
| 170 | + *, |
| 171 | + num_categories=(1, 2, 10), |
| 172 | + extra_dims=((), (0,), (4,), (2, 3), (5, 0), (0, 5)), |
| 173 | +): |
| 174 | + for num_categories_ in num_categories: |
| 175 | + yield make_one_hot_label(categories=[f"category{idx}" for idx in range(num_categories_)]) |
| 176 | + |
| 177 | + for extra_dims_ in extra_dims: |
| 178 | + yield make_one_hot_label(extra_dims_) |
| 179 | + |
| 180 | + |
| 181 | +def make_segmentation_mask(size=None, *, num_objects=None, extra_dims=(), dtype=torch.uint8): |
| 182 | + size = size if size is not None else torch.randint(16, 33, (2,)).tolist() |
| 183 | + num_objects = num_objects if num_objects is not None else int(torch.randint(1, 11, ())) |
| 184 | + shape = (*extra_dims, num_objects, *size) |
| 185 | + data = make_tensor(shape, low=0, high=2, dtype=dtype) |
| 186 | + return features.SegmentationMask(data) |
| 187 | + |
| 188 | + |
| 189 | +def make_segmentation_masks( |
| 190 | + sizes=((16, 16), (7, 33), (31, 9)), |
| 191 | + dtypes=(torch.uint8,), |
| 192 | + extra_dims=((), (0,), (4,), (2, 3), (5, 0), (0, 5)), |
| 193 | + num_objects=(1, 0, 10), |
| 194 | +): |
| 195 | + for size, dtype, extra_dims_ in itertools.product(sizes, dtypes, extra_dims): |
| 196 | + yield make_segmentation_mask(size=size, dtype=dtype, extra_dims=extra_dims_) |
| 197 | + |
| 198 | + for dtype, extra_dims_, num_objects_ in itertools.product(dtypes, extra_dims, num_objects): |
| 199 | + yield make_segmentation_mask(size=sizes[0], num_objects=num_objects_, dtype=dtype, extra_dims=extra_dims_) |
0 commit comments