-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathpredict.py
196 lines (180 loc) · 6.56 KB
/
predict.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
import re
import jieba
import jieba.posseg as pseg
jieba.load_userdict('./source/entity.txt')
# pku的模型略好
# jiagu.load_model('./model/pku.model') # 使用国家语委分词标准
class Toc:
index = 0
# 获取停用词的路径
stop = r'./source/stop_word.txt'
# 停用词表
stop_list = []
def get_stop_word(self):
with open(self.stop, 'r', encoding='utf-8') as f:
self.stop_list = [line.strip('\n') for line in f.readlines()]
@staticmethod
def part_re():
"""
添加分层次结构的正则表达
:return:
"""
part_re_d = re.compile(r"\d\.\d", re.S)
return part_re_d
def get_struction(self):
"""
对文本信息进行一个归类的处理 分出层次结构
:param:
:return:
"""
path = r'./data_file/part_' + str(self.index) + '.txt'
with open(path, 'r', encoding='utf-8') as f:
all_data = [line.strip('\n').replace(" ", '').replace(' ', '').replace("·", "_").replace('-', '').replace('*', '').replace('与', '-').replace('、', '-').replace('和', '-').replace('从', '&').replace('看', '&') for line in f.readlines()]
parts = self.part_re() # 获取正则匹配的表达式
flag = re.findall(parts, all_data[1]) # 设定初始游标判断是否进行下一个的输入
result = [] # 存贮总的信息
f = [] # 存储当前单元的信息 如 ['1.1信息', '1.1.1信息的定义', '1.1.2信息的种类', '1.1.3信息的度量']
for data in all_data:
part_result = re.findall(parts, data) # 对当前的阶段进行一个判断
if len(part_result) > 1: # 存在多个匹配值的时候取第一个匹配值
part_result = [part_result[0]]
if part_result == flag:
if part_result:
# 如果在就进行归类
f.append(data)
continue
else:
# 如果不在就交换flag 并且将存储当前单元的数据置空
flag = part_result
if f:
result.append(f)
f = [data, ]
# for i in result:
# print(i)
return result
def toc_extract(self):
"""
目录实体的抽取
"""
results = self.get_struction()
after = []
global detail
for one in results:
if results.index(one) == 0:
detail = self.title_detail(one)
else:
detail = self.content_detail(one)
if detail:
after.append(detail)
# for i in after:
# print(i)
def title_detail(self, sentence):
# ======================================================================================= 分开写为后面的段落结构划分
"""
主标题的抽取
:param sentence:
:return:
"""
result = []
for word in sentence:
mid = []
segment = jieba.lcut(word)
for one in segment:
# print(one)
if one not in self.stop_list:
mid.append(one)
result.append(' '.join(mid))
return result
def content_detail(self, sentence):
"""
子标题的抽取
:param sentence:
:return:
"""
result = []
for word in sentence:
word = re.sub(r'\d', '', word)
word = re.sub(r'\.', '', word)
segment = pseg.lcut(word)
# print(segment)
one = self.spo(segment)
if one:
result.append(one)
# print(result)
return result
def spo(self, segment):
"""
:param segment: 传入分词的列表
:return:
"""
# print(segment)
convert = [] # 存储转换后pair
for word, tags in segment: # 转换pair
# for i in one:
# t.append(i)
convert.append((word, tags))
stop_after = [] # 存储去除停用词的数组
for i in convert: # 去重停用词
if i[0] not in self.stop_list:
if i:
stop_after.append(i)
print(stop_after)
entity_chunk = ['t', 'v', 'n', 'vn'] # 向前的词
after = ['n', 'v', 'l'] # 最后的词
"""
从······看 替换成了- -
与 、 和 替换成了 -
"""
mid = [] # 返回的spo三元组
for one in range(len(stop_after) - 1, -1, -1):
if len(stop_after) == 2:
if stop_after[one][1] in after and stop_after[one - 1][1] in entity_chunk:
combine = stop_after[one - 1][0] + stop_after[one][0]
mid.append(combine)
break
else:
mid.append(stop_after[one])
if len(stop_after) == 3:
pass
# if stop_after[one][1] in after and after[one - 1][1] in entity_chunk:
# combine = after[one - 1][0] + after[one][0]
# mid.append(combine)
# break
# if one[i][1] in after and one[i - 1][1] in entity_chunk:
# combine = one[i - 1][0] + one[i][0]
# mid.append(combine)
# break
# for i in stop_after:
# # print(i)
# if len(stop_after) == 1:
# mid.append(i[0])
# break
# if len(stop_after) == 2:
# mid.append((stop_after[0][0]+stop_after[1][0]))
# break
# if len(stop_after) == 3:
# # if i[1] in after:
# # if stop_after[stop_after.index(i) - 1][1] in entity_chunk:
# # print(stop_after[stop_after.index(i) + 1])
# # store = stop_after[stop_after.index(i) + 1][0] + i[0]
# store = stop_after[1][0] + stop_after[2][0]
# mid.append((stop_after[0][0], ' ', store))
# break
# if len(stop_after) > 4:
# mid.append(stop_after)
# break
# if len(stop_after) == 4:
# break
# if i[0] == '-':
# mid.append(stop_after)
# break
print(f"我是mid:{mid}")
return mid
def start(self):
# for i in range(7):
self.get_stop_word()
self.toc_extract()
self.index += 1
if __name__ == '__main__':
toc = Toc()
toc.start()