|
| 1 | +""" Testing module for the generator and devices classes""" |
| 2 | + |
| 3 | +import pickle |
| 4 | +import numpy as np |
| 5 | +from c3.generator.devices import LO, AWG, Mixer, Response, Digital_to_Analog, Volts_to_Hertz |
| 6 | +from c3.generator.generator import Generator |
| 7 | +from c3.signal.gates import Instruction |
| 8 | +from c3.signal.pulse import Envelope, Carrier |
| 9 | +from c3.c3objs import Quantity |
| 10 | +import c3.libraries.envelopes as env_lib |
| 11 | + |
| 12 | +sim_res = 100e9 # Resolution for numerical simulation |
| 13 | +awg_res = 2e9 # Realistic, limited resolution of an AWG |
| 14 | +lo = LO(name='lo', resolution=sim_res) |
| 15 | +awg = AWG(name='awg', resolution=awg_res) |
| 16 | +mixer = Mixer(name='mixer') |
| 17 | + |
| 18 | +resp = Response( |
| 19 | + name='resp', |
| 20 | + rise_time=Quantity( |
| 21 | + value=0.3e-9, |
| 22 | + min=0.05e-9, |
| 23 | + max=0.6e-9, |
| 24 | + unit='s' |
| 25 | + ), |
| 26 | + resolution=sim_res |
| 27 | +) |
| 28 | + |
| 29 | +dig_to_an = Digital_to_Analog( |
| 30 | + name="dac", |
| 31 | + resolution=sim_res |
| 32 | +) |
| 33 | + |
| 34 | +v2hz = 1e9 |
| 35 | +v_to_hz = Volts_to_Hertz( |
| 36 | + name='v_to_hz', |
| 37 | + V_to_Hz=Quantity( |
| 38 | + value=v2hz, |
| 39 | + min=0.9e9, |
| 40 | + max=1.1e9, |
| 41 | + unit='Hz 2pi/V' |
| 42 | + ) |
| 43 | +) |
| 44 | + |
| 45 | +generator = Generator([lo, awg, mixer, v_to_hz, dig_to_an, resp]) |
| 46 | + |
| 47 | +t_final = 7e-9 # Time for single qubit gates |
| 48 | +sideband = 50e6 * 2 * np.pi |
| 49 | +gauss_params_single = { |
| 50 | + 'amp': Quantity( |
| 51 | + value=0.5, |
| 52 | + min=0.4, |
| 53 | + max=0.6, |
| 54 | + unit="V" |
| 55 | + ), |
| 56 | + 't_final': Quantity( |
| 57 | + value=t_final, |
| 58 | + min=0.5 * t_final, |
| 59 | + max=1.5 * t_final, |
| 60 | + unit="s" |
| 61 | + ), |
| 62 | + 'sigma': Quantity( |
| 63 | + value=t_final / 4, |
| 64 | + min=t_final / 8, |
| 65 | + max=t_final / 2, |
| 66 | + unit="s" |
| 67 | + ), |
| 68 | + 'xy_angle': Quantity( |
| 69 | + value=0.0, |
| 70 | + min=-0.5 * np.pi, |
| 71 | + max=2.5 * np.pi, |
| 72 | + unit='rad' |
| 73 | + ), |
| 74 | + 'freq_offset': Quantity( |
| 75 | + value=-sideband - 3e6 * 2 * np.pi, |
| 76 | + min=-56 * 1e6 * 2 * np.pi, |
| 77 | + max=-52 * 1e6 * 2 * np.pi, |
| 78 | + unit='Hz 2pi' |
| 79 | + ), |
| 80 | + 'delta': Quantity( |
| 81 | + value=-1, |
| 82 | + min=-5, |
| 83 | + max=3, |
| 84 | + unit="" |
| 85 | + ) |
| 86 | +} |
| 87 | +gauss_env_single = Envelope( |
| 88 | + name="gauss", |
| 89 | + desc="Gaussian comp for single-qubit gates", |
| 90 | + params=gauss_params_single, |
| 91 | + shape=env_lib.gaussian_nonorm |
| 92 | +) |
| 93 | + |
| 94 | + |
| 95 | +lo_freq_q1 = 5e9 * 2 * np.pi + sideband |
| 96 | +carrier_parameters = { |
| 97 | + 'freq': Quantity( |
| 98 | + value=lo_freq_q1, |
| 99 | + min=4.5e9 * 2 * np.pi, |
| 100 | + max=6e9 * 2 * np.pi, |
| 101 | + unit='Hz 2pi' |
| 102 | + ), |
| 103 | + 'framechange': Quantity( |
| 104 | + value=0.0, |
| 105 | + min= -np.pi, |
| 106 | + max= 3 * np.pi, |
| 107 | + unit='rad' |
| 108 | + ) |
| 109 | +} |
| 110 | +carr = Carrier( |
| 111 | + name="carrier", |
| 112 | + desc="Frequency of the local oscillator", |
| 113 | + params=carrier_parameters |
| 114 | +) |
| 115 | + |
| 116 | +X90p_q1 = Instruction( |
| 117 | + name="X90p", |
| 118 | + t_start=0.0, |
| 119 | + t_end=t_final, |
| 120 | + channels=["d1"] |
| 121 | +) |
| 122 | +X90p_q1.add_component(gauss_env_single, "d1") |
| 123 | +X90p_q1.add_component(carr, "d1") |
| 124 | + |
| 125 | +tstart = X90p_q1.t_start |
| 126 | +tend = X90p_q1.t_end |
| 127 | +chan = "d1" |
| 128 | + |
| 129 | +with open("test/generator_data.pickle", "rb") as filename: |
| 130 | + data = pickle.load(filename) |
| 131 | + |
| 132 | + |
| 133 | +def test_LO() -> None: |
| 134 | + lo_sig = lo.create_signal(X90p_q1.comps["d1"], tstart, tend)[0] |
| 135 | + assert (lo_sig["values"][0].numpy() == data["lo_sig"]["values"][0].numpy()).all() |
| 136 | + assert (lo_sig["values"][1].numpy() == data["lo_sig"]["values"][1].numpy()).all() |
| 137 | + assert (lo_sig["ts"].numpy() == data["lo_sig"]["ts"].numpy()).all() |
| 138 | + |
| 139 | + |
| 140 | +def test_AWG() -> None: |
| 141 | + awg_sig = awg.create_IQ("d1", X90p_q1.comps["d1"], tstart, tend) |
| 142 | + assert (awg_sig["inphase"].numpy() == data["awg_sig"]["inphase"].numpy()).all() |
| 143 | + assert (awg_sig["quadrature"].numpy() == data["awg_sig"]["quadrature"].numpy()).all() |
| 144 | + |
| 145 | + |
| 146 | +def test_DAC() -> None: |
| 147 | + dac_sig = dig_to_an.resample(data["awg_sig"], tstart, tend) |
| 148 | + assert (dac_sig["inphase"].numpy() == data["dig_to_an_sig"]["inphase"].numpy()).all() |
| 149 | + assert (dac_sig["quadrature"].numpy() == data["dig_to_an_sig"]["quadrature"].numpy()).all() |
| 150 | + |
| 151 | + |
| 152 | +def test_Response() -> None: |
| 153 | + resp_sig = resp.process(data["dig_to_an_sig"]) |
| 154 | + assert (resp_sig["inphase"].numpy() == data["resp_sig"]["inphase"].numpy()).all() |
| 155 | + assert (resp_sig["quadrature"].numpy() == data["resp_sig"]["quadrature"].numpy()).all() |
| 156 | + |
| 157 | + |
| 158 | +def test_mixer() -> None: |
| 159 | + mixed_sig = mixer.combine(data["lo_sig"], data["resp_sig"]) |
| 160 | + assert (mixed_sig.numpy() == data["mixer_sig"].numpy()).all() |
| 161 | + |
| 162 | + |
| 163 | +def test_v2hz() -> None: |
| 164 | + final_sig = v_to_hz.transform(data["mixer_sig"], 0) |
| 165 | + assert (final_sig.numpy() == data["v2hz_sig"].numpy()).all() |
| 166 | + |
| 167 | + |
| 168 | +def test_full_signal_chain() -> None: |
| 169 | + full_signal = generator.generate_signals(X90p_q1) |
| 170 | + assert (full_signal[0]["d1"]["values"].numpy() == data["full_signal"][0]["d1"]["values"].numpy()).all() |
| 171 | + assert (full_signal[1].numpy() == data["full_signal"][1].numpy()).all() |
0 commit comments