-
Notifications
You must be signed in to change notification settings - Fork 26
/
Copy pathexperiment.py
243 lines (200 loc) · 9.71 KB
/
experiment.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
import sys
import collections
import numpy
import random
import math
import os
import gc
try:
import ConfigParser as configparser
except:
import configparser
from labeler import SequenceLabeler
from evaluator import SequenceLabelingEvaluator
def read_input_files(file_paths, max_sentence_length=-1):
"""
Reads input files in whitespace-separated format.
Will split file_paths on comma, reading from multiple files.
The format assumes the first column is the word, the last column is the label.
"""
sentences = []
line_length = None
for file_path in file_paths.strip().split(","):
with open(file_path, "r") as f:
sentence = []
for line in f:
line = line.strip()
if len(line) > 0:
line_parts = line.split()
#assert(len(line_parts) >= 2)
#assert(len(line_parts) == line_length or line_length == None)
line_length = len(line_parts)
sentence.append(line_parts)
elif len(line) == 0 and len(sentence) > 0:
if max_sentence_length <= 0 or len(sentence) <= max_sentence_length:
sentences.append(sentence)
sentence = []
if len(sentence) > 0:
if max_sentence_length <= 0 or len(sentence) <= max_sentence_length:
sentences.append(sentence)
return sentences
def parse_config(config_section, config_path):
"""
Reads configuration from the file and returns a dictionary.
Tries to guess the correct datatype for each of the config values.
"""
config_parser = configparser.SafeConfigParser(allow_no_value=True)
config_parser.read(config_path)
config = collections.OrderedDict()
for key, value in config_parser.items(config_section):
if value is None or len(value.strip()) == 0:
config[key] = None
elif value.lower() in ["true", "false"]:
config[key] = config_parser.getboolean(config_section, key)
elif value.isdigit():
config[key] = config_parser.getint(config_section, key)
elif is_float(value):
config[key] = config_parser.getfloat(config_section, key)
else:
config[key] = config_parser.get(config_section, key)
return config
def is_float(value):
"""
Check in value is of type float()
"""
try:
float(value)
return True
except ValueError:
return False
def create_batches_of_sentence_ids(sentences, batch_equal_size, max_batch_size):
"""
Groups together sentences into batches
If batch_equal_size is True, make all sentences in a batch be equal length.
If max_batch_size is positive, this value determines the maximum number of sentences in each batch.
If max_batch_size has a negative value, the function dynamically creates the batches such that each batch contains abs(max_batch_size) words.
Returns a list of lists with sentences ids.
"""
batches_of_sentence_ids = []
if batch_equal_size == True:
sentence_ids_by_length = collections.OrderedDict()
sentence_length_sum = 0.0
for i in range(len(sentences)):
length = len(sentences[i])
if length not in sentence_ids_by_length:
sentence_ids_by_length[length] = []
sentence_ids_by_length[length].append(i)
for sentence_length in sentence_ids_by_length:
if max_batch_size > 0:
batch_size = max_batch_size
else:
batch_size = int((-1.0 * max_batch_size) / sentence_length)
for i in range(0, len(sentence_ids_by_length[sentence_length]), batch_size):
batches_of_sentence_ids.append(sentence_ids_by_length[sentence_length][i:i + batch_size])
else:
current_batch = []
max_sentence_length = 0
for i in range(len(sentences)):
current_batch.append(i)
if len(sentences[i]) > max_sentence_length:
max_sentence_length = len(sentences[i])
if (max_batch_size > 0 and len(current_batch) >= max_batch_size) \
or (max_batch_size <= 0 and len(current_batch)*max_sentence_length >= (-1 * max_batch_size)):
batches_of_sentence_ids.append(current_batch)
current_batch = []
max_sentence_length = 0
if len(current_batch) > 0:
batches_of_sentence_ids.append(current_batch)
return batches_of_sentence_ids
def process_sentences(data, labeler, is_training, learningrate, config, name):
"""
Process all the sentences with the labeler, return evaluation metrics.
"""
evaluator = SequenceLabelingEvaluator(config["main_label"], labeler.label2id, config["conll_eval"])
batches_of_sentence_ids = create_batches_of_sentence_ids(data, config["batch_equal_size"], config["max_batch_size"])
if is_training == True:
random.shuffle(batches_of_sentence_ids)
for sentence_ids_in_batch in batches_of_sentence_ids:
batch = [data[i] for i in sentence_ids_in_batch]
cost, predicted_labels, predicted_probs = labeler.process_batch(batch, is_training, learningrate)
evaluator.append_data(cost, batch, predicted_labels)
word_ids, char_ids, char_mask, label_ids = None, None, None, None
while config["garbage_collection"] == True and gc.collect() > 0:
pass
results = evaluator.get_results(name)
for key in results:
print(key + ": " + str(results[key]))
return results
def run_experiment(config_path):
config = parse_config("config", config_path)
temp_model_path = config_path + ".model"
if "random_seed" in config:
random.seed(config["random_seed"])
numpy.random.seed(config["random_seed"])
for key, val in config.items():
print(str(key) + ": " + str(val))
data_train, data_dev, data_test = None, None, None
if config["path_train"] != None and len(config["path_train"]) > 0:
data_train = read_input_files(config["path_train"], config["max_train_sent_length"])
if config["path_dev"] != None and len(config["path_dev"]) > 0:
data_dev = read_input_files(config["path_dev"])
if config["path_test"] != None and len(config["path_test"]) > 0:
data_test = []
for path_test in config["path_test"].strip().split(":"):
data_test += read_input_files(path_test)
if config["load"] != None and len(config["load"]) > 0:
labeler = SequenceLabeler.load(config["load"])
else:
labeler = SequenceLabeler(config)
labeler.build_vocabs(data_train, data_dev, data_test, config["preload_vectors"])
labeler.construct_network()
labeler.initialize_session()
if config["preload_vectors"] != None:
labeler.preload_word_embeddings(config["preload_vectors"])
print("parameter_count: " + str(labeler.get_parameter_count()))
print("parameter_count_without_word_embeddings: " + str(labeler.get_parameter_count_without_word_embeddings()))
if data_train != None:
model_selector = config["model_selector"].split(":")[0]
model_selector_type = config["model_selector"].split(":")[1]
best_selector_value = 0.0
best_epoch = -1
learningrate = config["learningrate"]
for epoch in range(config["epochs"]):
print("EPOCH: " + str(epoch))
print("current_learningrate: " + str(learningrate))
random.shuffle(data_train)
results_train = process_sentences(data_train, labeler, is_training=True, learningrate=learningrate, config=config, name="train")
if data_dev != None:
results_dev = process_sentences(data_dev, labeler, is_training=False, learningrate=0.0, config=config, name="dev")
if math.isnan(results_dev["dev_cost_sum"]) or math.isinf(results_dev["dev_cost_sum"]):
sys.stderr.write("ERROR: Cost is NaN or Inf. Exiting.\n")
break
if (epoch == 0 or (model_selector_type == "high" and results_dev[model_selector] > best_selector_value)
or (model_selector_type == "low" and results_dev[model_selector] < best_selector_value)):
best_epoch = epoch
best_selector_value = results_dev[model_selector]
labeler.saver.save(labeler.session, temp_model_path, latest_filename=os.path.basename(temp_model_path)+".checkpoint")
print("best_epoch: " + str(best_epoch))
if config["stop_if_no_improvement_for_epochs"] > 0 and (epoch - best_epoch) >= config["stop_if_no_improvement_for_epochs"]:
break
if (epoch - best_epoch) > 3:
learningrate *= config["learningrate_decay"]
while config["garbage_collection"] == True and gc.collect() > 0:
pass
if data_dev != None and best_epoch >= 0:
# loading the best model so far
labeler.saver.restore(labeler.session, temp_model_path)
os.remove(temp_model_path+".checkpoint")
os.remove(temp_model_path+".data-00000-of-00001")
os.remove(temp_model_path+".index")
os.remove(temp_model_path+".meta")
if config["save"] is not None and len(config["save"]) > 0:
labeler.save(config["save"])
if config["path_test"] is not None:
i = 0
for path_test in config["path_test"].strip().split(":"):
data_test = read_input_files(path_test)
results_test = process_sentences(data_test, labeler, is_training=False, learningrate=0.0, config=config, name="test"+str(i))
i += 1
if __name__ == "__main__":
run_experiment(sys.argv[1])