-
Notifications
You must be signed in to change notification settings - Fork 25
/
config.py
76 lines (64 loc) · 4.8 KB
/
config.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
import configargparse
def get_args():
parser = configargparse.ArgParser(config_file_parser_class=configargparse.YAMLConfigFileParser)
parser.add_argument('--config', is_config_file=True, help='config file path')
## path options
parser.add_argument('--datadir', type=str, help='the dataset directory')
parser.add_argument("--logdir", type=str, default='./logs/', help='dir of tensorboard logs')
parser.add_argument("--outdir", type=str, default='./out/', help='dir of output e.g., ckpts')
parser.add_argument("--ckpt_path", type=str, default="",
help='specific checkpoint path to load the model from, '
'if not specified, automatically reload from most recent checkpoints')
## general options
parser.add_argument("--exp_name", type=str, help='experiment name')
parser.add_argument('--n_iters', type=int, default=200000, help='max number of training iterations')
parser.add_argument('--phase', type=str, default='train', help='train/val/test')
# data options
parser.add_argument('--workers', type=int, help='number of data loading workers', default=4)
parser.add_argument('--num_pts', type=int, default=500, help='num of points trained in each pair')
parser.add_argument('--train_kp', type=str, default='mixed', help='sift/random/mixed')
parser.add_argument('--prune_kp', type=int, default=1, help='if prune non-matchable keypoints')
# training options
parser.add_argument('--batch_size', type=int, default=6, help='input batch size')
parser.add_argument('--lr', type=float, default=1e-4, help='base learning rate')
parser.add_argument("--lrate_decay_steps", type=int, default=80000,
help='decay learning rate by a factor every specified number of steps')
parser.add_argument("--lrate_decay_factor", type=float, default=0.5,
help='decay learning rate by a factor every specified number of steps')
## model options
parser.add_argument('--backbone', type=str, default='resnet50',
help='backbone for feature representation extraction. supported: resent')
parser.add_argument('--pretrained', type=int, default=1,
help='if use ImageNet pretrained weights to initialize the network')
parser.add_argument('--coarse_feat_dim', type=int, default=128,
help='the feature dimension for coarse level features')
parser.add_argument('--fine_feat_dim', type=int, default=128,
help='the feature dimension for fine level features')
parser.add_argument('--prob_from', type=str, default='correlation',
help='compute prob by softmax(correlation score), or softmax(-distance),'
'options: correlation|distance')
parser.add_argument('--window_size', type=float, default=0.125,
help='the size of the window, w.r.t image width at the fine level')
parser.add_argument('--use_nn', type=int, default=1, help='if use nearest neighbor in the coarse level')
## loss function options
parser.add_argument('--std', type=int, default=1, help='reweight loss using the standard deviation')
parser.add_argument('--w_epipolar_coarse', type=float, default=1, help='coarse level epipolar loss weight')
parser.add_argument('--w_epipolar_fine', type=float, default=1, help='fine level epipolar loss weight')
parser.add_argument('--w_cycle_coarse', type=float, default=0.1, help='coarse level cycle consistency loss weight')
parser.add_argument('--w_cycle_fine', type=float, default=0.1, help='fine level cycle consistency loss weight')
parser.add_argument('--w_std', type=float, default=0, help='the weight for the loss on std')
parser.add_argument('--th_cycle', type=float, default=0.025,
help='if the distance (normalized scale) from the prediction to epipolar line > this th, '
'do not add the cycle consistency loss')
parser.add_argument('--th_epipolar', type=float, default=0.5,
help='if the distance (normalized scale) from the prediction to epipolar line > this th, '
'do not add the epipolar loss')
## logging options
parser.add_argument('--log_scalar_interval', type=int, default=20, help='print interval')
parser.add_argument('--log_img_interval', type=int, default=500, help='log image interval')
parser.add_argument("--save_interval", type=int, default=10000, help='frequency of weight ckpt saving')
## eval options
parser.add_argument('--extract_img_dir', type=str, help='the directory of images to extract features')
parser.add_argument('--extract_out_dir', type=str, help='the directory of images to extract features')
args = parser.parse_known_args()[0]
return args