forked from leofansq/SIFT
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcommon.h
127 lines (106 loc) · 4.19 KB
/
common.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
/*
数学数值定义 & 基础运算 & 矩阵运算 函数定义 库文件
*/
#ifndef COMMOM_H
#define COMMOM_H
#include <math.h>
#include <stdarg.h>
#include <stdio.h>
namespace sift{
/**********************************************
******** 数值定义 ***********
***********************************************/
#define PI 3.141592653589793f
#define _2PI 6.283185307179586f
#define PI_4 0.785398163397448f
#define PI_3_4 2.356194490192345f
#define SQRT2 1.414213562373095f
/**********************************************
******** 基础运算 ***********
***********************************************/
// 最大最小值
#define MAX(a, b) (a >= b ? a : b)
#define MIN(a, b) (a <= b ? a : b)
// 计算log2
inline float my_log2(float n)
{
return (float)((log(n)) / 0.69314718055994530941723212145818);
}
// 快速Atan2()
#define EPSILON_F 1.19209290E-07F
inline float fast_atan2_f(float y, float x)
{
float angle, r;
float const c3 = 0.1821F;
float const c1 = 0.9675F;
float abs_y = fabsf(y) + EPSILON_F;
if (x >= 0) {
r = (x - abs_y) / (x + abs_y);
angle = PI_4;
}
else {
r = (x + abs_y) / (abs_y - x);
angle = PI_3_4;
}
angle += (c3 * r * r - c1) * r;
return (y < 0) ? _2PI - angle : angle;
}
// 快速Sqrt()
inline float fast_resqrt_f(float x)
{
// 32-bit version
union {
float x;
int i;
} u;
float xhalf = (float)0.5 * x;
// convert floating point value in RAW integer
u.x = x;
// gives initial guess y0
u.i = 0x5f3759df - (u.i >> 1);
// two Newton steps
u.x = u.x * ((float)1.5 - xhalf * u.x * u.x);
u.x = u.x * ((float)1.5 - xhalf * u.x * u.x);
return u.x;
}
inline float fast_sqrt_f(float x)
{
return (x < 1e-8) ? 0 : x * fast_resqrt_f(x);
}
/**********************************************
******** 矩阵运算 ***********
***********************************************/
//矩阵乘向量
#define MAT_DOT_VEC_3X3(p, m, v) \
\
{ \
p[0] = m[0][0] * v[0] + m[0][1] * v[1] + m[0][2] * v[2]; \
p[1] = m[1][0] * v[0] + m[1][1] * v[1] + m[1][2] * v[2]; \
p[2] = m[2][0] * v[0] + m[2][1] * v[1] + m[2][2] * v[2]; \
}
//计算Det
#define DETERMINANT_3X3(d, m) \
\
{ \
d = m[0][0] * (m[1][1] * m[2][2] - m[1][2] * m[2][1]); \
d -= m[0][1] * (m[1][0] * m[2][2] - m[1][2] * m[2][0]); \
d += m[0][2] * (m[1][0] * m[2][1] - m[1][1] * m[2][0]); \
}
//compute adjoint of matrix and scale, Computes adjoint of matrix m, scales it by s, returning a
#define SCALE_ADJOINT_3X3(a, s, m) \
\
{ \
a[0][0] = (s) * (m[1][1] * m[2][2] - m[1][2] * m[2][1]); \
a[1][0] = (s) * (m[1][2] * m[2][0] - m[1][0] * m[2][2]); \
a[2][0] = (s) * (m[1][0] * m[2][1] - m[1][1] * m[2][0]); \
\
a[0][1] = (s) * (m[0][2] * m[2][1] - m[0][1] * m[2][2]); \
a[1][1] = (s) * (m[0][0] * m[2][2] - m[0][2] * m[2][0]); \
a[2][1] = (s) * (m[0][1] * m[2][0] - m[0][0] * m[2][1]); \
\
a[0][2] = (s) * (m[0][1] * m[1][2] - m[0][2] * m[1][1]); \
a[1][2] = (s) * (m[0][2] * m[1][0] - m[0][0] * m[1][2]); \
a[2][2] = (s) * (m[0][0] * m[1][1] - m[0][1] * m[1][0]); \
}
} // end namespace sift
#endif