-
Notifications
You must be signed in to change notification settings - Fork 1
/
attention.py
530 lines (448 loc) · 21.8 KB
/
attention.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
import theano
from theano import tensor
from blocks.bricks import (Brick, Initializable, Sequence,
Feedforward, Linear, Tanh)
from blocks.bricks.base import lazy, application
from blocks.bricks.parallel import Parallel, Distribute
from blocks.bricks.recurrent import recurrent, BaseRecurrent
from blocks.utils import dict_union, dict_subset, pack
from blocks.bricks.attention import (
GenericSequenceAttention, AbstractAttentionRecurrent)
from match_functions import SumMatchFunction
class SequenceContentAttention(GenericSequenceAttention, Initializable):
"""Attention mechanism that looks for relevant content in a sequence.
This is the attention mechanism used in [BCB]_. The idea in a nutshell:
1. The states and the sequence are transformed independently,
2. The transformed states are summed with every transformed sequence
element to obtain *match vectors*,
3. A match vector is transformed into a single number interpreted as
*energy*,
4. Energies are normalized in softmax-like fashion. The resulting
summing to one weights are called *attention weights*,
5. Weighted average of the sequence elements with attention weights
is computed.
In terms of the :class:`AbstractAttention` documentation, the sequence
is the attended. The weighted averages from 5 and the attention
weights from 4 form the set of glimpses produced by this attention
mechanism.
Parameters
----------
state_names : list of str
The names of the network states.
attended_dim : int
The dimension of the sequence elements.
match_dim : int
The dimension of the match vector.
state_transformer : :class:`.Brick`
A prototype for state transformations. If ``None``,
a linear transformation is used.
attended_transformer : :class:`.Feedforward`
The transformation to be applied to the sequence. If ``None`` an
affine transformation is used.
energy_computer : :class:`.Feedforward`
Computes energy from the match vector. If ``None``, an affine
transformations preceeded by :math:`tanh` is used.
Notes
-----
See :class:`.Initializable` for initialization parameters.
.. [BCB] Dzmitry Bahdanau, Kyunghyun Cho and Yoshua Bengio. Neural
Machine Translation by Jointly Learning to Align and Translate.
"""
@lazy(allocation=['match_dim'])
def __init__(self, match_dim,
use_local_attention=False, window_size=10, sigma=None,
state_transformer=None, local_state_transformer=None,
local_predictor=None, attended_transformer=None,
energy_computer=None, **kwargs):
super(SequenceContentAttention, self).__init__(**kwargs)
if not state_transformer:
state_transformer = Linear(use_bias=False, name="state_trans")
if not local_state_transformer:
local_state_transformer = Linear(use_bias=False,
name="local_state_trans")
if not local_predictor:
local_predictor = Linear(use_bias=False, name="local_pred")
if sigma is None:
sigma = window_size * 1.0 / 2
self.use_local_attention = use_local_attention
self.sigma = sigma * sigma
self.match_dim = match_dim
self.state_name = self.state_names[0]
self.state_transformer = state_transformer
self.local_state_transformer = local_state_transformer
self.local_predictor = local_predictor
if not attended_transformer:
attended_transformer = Linear(name="preprocess")
if not energy_computer:
energy_computer = SumMatchFunction(name="energy_comp")
self.attended_transformer = attended_transformer
self.energy_computer = energy_computer
self.children = [self.state_transformer, self.local_state_transformer,
self.local_predictor, self.attended_transformer,
energy_computer]
def _push_allocation_config(self):
self.state_dim = self.state_dims[0]
self.state_transformer.input_dim = self.state_dim
self.state_transformer.output_dim = self.match_dim
self.local_state_transformer.input_dim = self.state_dim
self.local_state_transformer.output_dim = self.match_dim
self.local_predictor.input_dim = self.state_dim
self.local_predictor.output_dim = 1
self.attended_transformer.input_dim = self.attended_dim
self.attended_transformer.output_dim = self.match_dim
self.energy_computer.input_dim = self.match_dim
self.energy_computer.output_dim = 1
@application
def compute_energies(self, attended, preprocessed_attended, states):
if not preprocessed_attended:
preprocessed_attended = self.preprocess(attended)
_states = states[self.state_name]
transformed_states = self.state_transformer.apply(_states)
# Broadcasting of transformed states should be done automatically
# match_vectors = sum(transformed_states.values(),
# preprocessed_attended)
# energies = self.energy_computer.apply(match_vectors).reshape(
# match_vectors.shape[:-1], ndim=match_vectors.ndim - 1)
energies = self.energy_computer.apply(transformed_states,
preprocessed_attended)
return energies
@application
def get_local_predition(self, states, attended, attended_mask):
_states = states[self.state_name]
# local_states: [batch, features]
local_states = self.local_state_transformer.apply(_states)
# local_prediction is reshaped to [batch]
local_prediction = self.local_predictor.apply(
tensor.tanh(local_states)).reshape(
local_states.shape[:-1], ndim=local_states.ndim - 1)
local_prediction = tensor.nnet.sigmoid(local_prediction)
# attended_mask is [time, batch]
_attended_mask = tensor.sum(attended_mask, axis=0)
return _attended_mask * local_prediction
@application
def adjust_weights(self, attended_mask, weights, local_prediction):
# weights: [time, batch]
# local_prediction: [batch]
# locations: [time, batch]
locations = tensor.arange(
attended_mask.shape[0]).repeat(
attended_mask.shape[1]).reshape(
attended_mask.shape).astype(
theano.config.floatX)
# diff: [time, batch]
diff = locations - local_prediction
# gauss: [time, batch]
gauss = tensor.pow(diff, 2) / (2 * self.sigma)
gauss = tensor.exp(-gauss)
weights = weights * gauss
return weights
@application(outputs=['weighted_averages', 'weights'])
def take_glimpses(self, attended, preprocessed_attended=None,
attended_mask=None, **states):
r"""Compute attention weights and produce glimpses.
Parameters
----------
attended : :class:`~tensor.TensorVariable`
The sequence, time is the 1-st dimension.
preprocessed_attended : :class:`~tensor.TensorVariable`
The preprocessed sequence. If ``None``, is computed by calling
:meth:`preprocess`.
attended_mask : :class:`~tensor.TensorVariable`
A 0/1 mask specifying available data. 0 means that the
corresponding sequence element is fake.
\*\*states
The states of the network.
Returns
-------
weighted_averages : :class:`~theano.Variable`
Linear combinations of sequence elements with the attention
weights.
weights : :class:`~theano.Variable`
The attention weights. The first dimension is batch, the second
is time.
"""
energies = self.compute_energies(
attended, preprocessed_attended, states)
# weights has dimensions: [time (src), batch]
weights = self.compute_weights(energies, attended_mask)
if self.use_local_attention:
# local_pred should have dimension: [batch],
# the predicted position for each batch
local_pred = self.get_local_predition(
states, attended, attended_mask)
weights = self.adjust_weights(attended_mask, weights, local_pred)
weighted_averages = self.compute_weighted_averages(weights, attended)
return weighted_averages, weights.T
@take_glimpses.property('inputs')
def take_glimpses_inputs(self):
return (['attended', 'preprocessed_attended', 'attended_mask'] +
self.state_names)
@application(outputs=['weighted_averages', 'weights'])
def initial_glimpses(self, batch_size, attended):
return [tensor.zeros((batch_size, self.attended_dim)),
tensor.zeros((batch_size, attended.shape[0]))]
@application(inputs=['attended'], outputs=['preprocessed_attended'])
def preprocess(self, attended):
"""Preprocess the sequence for computing attention weights.
Parameters
----------
attended : :class:`~tensor.TensorVariable`
The attended sequence, time is the 1-st dimension.
"""
return self.attended_transformer.apply(attended)
def get_dim(self, name):
if name in ['weighted_averages','topical_weighted_averages','topical_weights']:
return self.attended_dim
if name in ['weights']:
return 0
return super(SequenceContentAttention, self).get_dim(name)
class AttentionRecurrent(AbstractAttentionRecurrent, Initializable):
"""Combines an attention mechanism and a recurrent transition.
This brick equips a recurrent transition with an attention mechanism.
In order to do this two more contexts are added: one to be attended and
a mask for it. It is also possible to use the contexts of the given
recurrent transition for these purposes and not add any new ones,
see `add_context` parameter.
At the beginning of each step attention mechanism produces glimpses;
these glimpses together with the current states are used to compute the
next state and finish the transition. In some cases glimpses from the
previous steps are also necessary for the attention mechanism, e.g.
in order to focus on an area close to the one from the previous step.
This is also supported: such glimpses become states of the new
transition.
To let the user control the way glimpses are used, this brick also
takes a "distribute" brick as parameter that distributes the
information from glimpses across the sequential inputs of the wrapped
recurrent transition.
Parameters
----------
transition : :class:`.BaseRecurrent`
The recurrent transition.
attention : :class:`.Brick`
The attention mechanism.
distribute : :class:`.Brick`, optional
Distributes the information from glimpses across the input
sequences of the transition. By default a :class:`.Distribute` is
used, and those inputs containing the "mask" substring in their
name are not affected.
add_contexts : bool, optional
If ``True``, new contexts for the attended and the attended mask
are added to this transition, otherwise existing contexts of the
wrapped transition are used. ``True`` by default.
attended_name : str
The name of the attended context. If ``None``, "attended"
or the first context of the recurrent transition is used
depending on the value of `add_contents` flag.
attended_mask_name : str
The name of the mask for the attended context. If ``None``,
"attended_mask" or the second context of the recurrent transition
is used depending on the value of `add_contents` flag.
Notes
-----
See :class:`.Initializable` for initialization parameters.
Wrapping your recurrent brick with this class makes all the
states mandatory. If you feel this is a limitation for you, try
to make it better! This restriction does not apply to sequences
and contexts: those keep being as optional as they were for
your brick.
Those coming to Blocks from Groundhog might recognize that this is
a `RecurrentLayerWithSearch`, but on steroids :)
"""
def __init__(self, transition, attention, distribute=None,
add_contexts=True,
attended_name=None, attended_mask_name=None,
**kwargs):
super(AttentionRecurrent, self).__init__(**kwargs)
self._sequence_names = list(transition.apply.sequences)
self._state_names = list(transition.apply.states)
self._context_names = list(transition.apply.contexts)
if add_contexts:
if not attended_name:
attended_name = 'attended'
if not attended_mask_name:
attended_mask_name = 'attended_mask'
self._context_names += [attended_name, attended_mask_name]
else:
attended_name = self._context_names[0]
attended_mask_name = self._context_names[1]
if not distribute:
normal_inputs = [name for name in self._sequence_names
if 'mask' not in name]
distribute = Distribute(normal_inputs,
attention.take_glimpses.outputs[0])
self.transition = transition
self.attention = attention
self.distribute = distribute
self.add_contexts = add_contexts
self.attended_name = attended_name
self.attended_mask_name = attended_mask_name
self.preprocessed_attended_name = "preprocessed_" + self.attended_name
self._glimpse_names = self.attention.take_glimpses.outputs
# We need to determine which glimpses are fed back.
# Currently we extract it from `take_glimpses` signature.
self.previous_glimpses_needed = [
name for name in self._glimpse_names
if name in self.attention.take_glimpses.inputs]
self.children = [self.transition, self.attention, self.distribute]
def _push_allocation_config(self):
self.attention.state_dims = self.transition.get_dims(
self.attention.state_names)
self.attention.attended_dim = self.get_dim(self.attended_name)
self.distribute.source_dim = self.attention.get_dim(
self.distribute.source_name)
self.distribute.target_dims = self.transition.get_dims(
self.distribute.target_names)
@application
def take_glimpses(self, **kwargs):
r"""Compute glimpses with the attention mechanism.
A thin wrapper over `self.attention.take_glimpses`: takes care
of choosing and renaming the necessary arguments.
Parameters
----------
\*\*kwargs
Must contain the attended, previous step states and glimpses.
Can optionaly contain the attended mask and the preprocessed
attended.
Returns
-------
glimpses : list of :class:`~tensor.TensorVariable`
Current step glimpses.
"""
states = dict_subset(kwargs, self._state_names, pop=True)
glimpses = dict_subset(kwargs, self._glimpse_names, pop=True)
glimpses_needed = dict_subset(glimpses, self.previous_glimpses_needed)
result = self.attention.take_glimpses(
kwargs.pop(self.attended_name),
kwargs.pop(self.preprocessed_attended_name, None),
kwargs.pop(self.attended_mask_name, None),
**dict_union(states, glimpses_needed))
# At this point kwargs may contain additional items.
# e.g. AttentionRecurrent.transition.apply.contexts
return result
@take_glimpses.property('outputs')
def take_glimpses_outputs(self):
return self._glimpse_names
@application
def compute_states(self, **kwargs):
r"""Compute current states when glimpses have already been computed.
Combines an application of the `distribute` that alter the
sequential inputs of the wrapped transition and an application of
the wrapped transition. All unknown keyword arguments go to
the wrapped transition.
Parameters
----------
\*\*kwargs
Should contain everything what `self.transition` needs
and in addition the current glimpses.
Returns
-------
current_states : list of :class:`~tensor.TensorVariable`
Current states computed by `self.transition`.
"""
# make sure we are not popping the mask
normal_inputs = [name for name in self._sequence_names
if 'mask' not in name]
sequences = dict_subset(kwargs, normal_inputs, pop=True)
glimpses = dict_subset(kwargs, self._glimpse_names, pop=True)
if self.add_contexts:
kwargs.pop(self.attended_name)
# attended_mask_name can be optional
kwargs.pop(self.attended_mask_name, None)
sequences.update(self.distribute.apply(
as_dict=True, **dict_subset(dict_union(sequences, glimpses),
self.distribute.apply.inputs)))
current_states = self.transition.apply(
iterate=False, as_list=True,
**dict_union(sequences, kwargs))
return current_states
@compute_states.property('outputs')
def compute_states_outputs(self):
return self._state_names
@recurrent
def do_apply(self, **kwargs):
r"""Process a sequence attending the attended context every step.
In addition to the original sequence this method also requires
its preprocessed version, the one computed by the `preprocess`
method of the attention mechanism. Unknown keyword arguments
are passed to the wrapped transition.
Parameters
----------
\*\*kwargs
Should contain current inputs, previous step states, contexts,
the preprocessed attended context, previous step glimpses.
Returns
-------
outputs : list of :class:`~tensor.TensorVariable`
The current step states and glimpses.
"""
attended = kwargs[self.attended_name]
preprocessed_attended = kwargs.pop(self.preprocessed_attended_name)
attended_mask = kwargs.get(self.attended_mask_name)
sequences = dict_subset(kwargs, self._sequence_names, pop=True,
must_have=False)
states = dict_subset(kwargs, self._state_names, pop=True)
glimpses = dict_subset(kwargs, self._glimpse_names, pop=True)
current_glimpses = self.take_glimpses(
as_dict=True,
**dict_union(
states, glimpses,
{self.attended_name: attended,
self.attended_mask_name: attended_mask,
self.preprocessed_attended_name: preprocessed_attended}))
current_states = self.compute_states(
as_list=True,
**dict_union(sequences, states, current_glimpses, kwargs))
return current_states + list(current_glimpses.values())
@do_apply.property('sequences')
def do_apply_sequences(self):
return self._sequence_names
@do_apply.property('contexts')
def do_apply_contexts(self):
return self._context_names + [self.preprocessed_attended_name]
@do_apply.property('states')
def do_apply_states(self):
return self._state_names + self._glimpse_names
@do_apply.property('outputs')
def do_apply_outputs(self):
return self._state_names + self._glimpse_names
@application
def apply(self, **kwargs):
"""Preprocess a sequence attending the attended context at every step.
Preprocesses the attended context and runs :meth:`do_apply`. See
:meth:`do_apply` documentation for further information.
"""
preprocessed_attended = self.attention.preprocess(
kwargs[self.attended_name])
return self.do_apply(
**dict_union(kwargs,
{self.preprocessed_attended_name:
preprocessed_attended}))
@apply.delegate
def apply_delegate(self):
# TODO: Nice interface for this trick?
return self.do_apply.__get__(self, None)
@apply.property('contexts')
def apply_contexts(self):
return self._context_names
@application
def initial_states(self, batch_size, **kwargs):
return (pack(self.transition.initial_states(
batch_size, **kwargs)) +
pack(self.attention.initial_glimpses(
batch_size, kwargs[self.attended_name])))
@initial_states.property('outputs')
def initial_states_outputs(self):
return self.do_apply.states
def get_dim(self, name):
if name in self._glimpse_names:
return self.attention.get_dim(name)
if name == self.preprocessed_attended_name:
(original_name,) = self.attention.preprocess.outputs
return self.attention.get_dim(original_name)
if self.add_contexts:
if name == self.attended_name:
return self.attention.get_dim(
self.attention.take_glimpses.inputs[0])
if name == self.attended_mask_name:
return 0
return self.transition.get_dim(name)