-
Notifications
You must be signed in to change notification settings - Fork 1
/
visualize_attention.py
432 lines (369 loc) · 19.2 KB
/
visualize_attention.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
from __future__ import print_function
import logging
import time
import numpy
import os
import cPickle
import string
from collections import Counter
from theano import tensor, function,shared
from toolz import merge
from progressbar import ProgressBar
from blocks.algorithms import (GradientDescent, StepClipping,
AdaDelta, AdaGrad, Scale, CompositeRule)
from blocks.extensions import FinishAfter, Printing, Timing
from blocks.extensions.monitoring import TrainingDataMonitoring
from blocks.filter import VariableFilter
from blocks.graph import ComputationGraph, apply_noise, apply_dropout
from blocks.initialization import IsotropicGaussian, Orthogonal, Constant
from blocks.main_loop import MainLoop
from blocks.model import Model
from search_decoder_with_extra_class import BeamSearch
from blocks.select import Selector
from checkpoint import CheckpointNMT, LoadNMT
from model import BidirectionalEncoder, Decoder, topicalq_transformer
from sampling import BleuValidator, Sampler, SamplingBase, pplValidation
from stream import (get_tr_stream, get_dev_stream, get_tr_stream_with_topic_target,get_dev_stream_with_topicalq,
get_tr_stream_unsorted, _ensure_special_tokens)
from SimplePrinting import SimplePrinting
from learning_rate_halver import (LearningRateHalver,
LearningRateDoubler,
OldModelRemover)
from afterprocess import afterprocesser
from picklable_itertools.extras import equizip
try:
from blocks.extras.extensions.plot import Plot
BOKEH_AVAILABLE = True
except ImportError:
BOKEH_AVAILABLE = False
logger = logging.getLogger(__name__)
def main(mode, config, use_bokeh=False):
# Construct model
config['batch_size'] = 5
config['beam_size'] = 1
config['src_vocab_size'] = 30000
config['source_topic_vocab_size'] = 4496
config['trg_vocab_size'] = 30000
config['trg_topic_vocab_size'] = config['source_topic_vocab_size']
config['topical_word_num']=10
config['topical_embedding_dim']=100
logger.info('Building RNN encoder-decoder')
encoder = BidirectionalEncoder(
config['src_vocab_size'], config['enc_embed'], config['enc_nhids'])
topical_transformer=topicalq_transformer(config['source_topic_vocab_size'],config['topical_embedding_dim'], config['enc_nhids'],config['topical_word_num'],config['batch_size']);
decoder = Decoder(vocab_size=config['trg_vocab_size'],
topicWord_size=config['trg_topic_vocab_size'],#
embedding_dim=config['dec_embed'],
topical_dim=config['topical_embedding_dim'],#200
state_dim=config['dec_nhids'],#
representation_dim=config['enc_nhids']*2,#200
match_function=config['match_function'],
use_doubly_stochastic=config['use_doubly_stochastic'],
lambda_ds=config['lambda_ds'],
use_local_attention=config['use_local_attention'],
window_size=config['window_size'],
use_step_decay_cost=config['use_step_decay_cost'],
use_concentration_cost=config['use_concentration_cost'],
lambda_ct=config['lambda_ct'],
use_stablilizer=config['use_stablilizer'],
lambda_st=config['lambda_st'])
# here attended dim (representation_dim) of decoder is 2*enc_nhinds
# because the context given by the encoder is a bidirectional context
if mode == "train":
# Create Theano variables
logger.info('Creating theano variables')
source_sentence = tensor.lmatrix('source')
source_sentence_mask = tensor.lmatrix('source_mask')
target_sentence = tensor.lmatrix('target')
target_sentence_mask = tensor.lmatrix('target_mask')
target_topic_sentence=tensor.lmatrix('target_topic');
target_topic_binary_sentence=tensor.lmatrix('target_binary_topic');
#target_topic_sentence_mask=tensor.lmatrix('target_topic_mask');
sampling_input = tensor.lmatrix('input')
source_topical_word=tensor.lmatrix('source_topical')
source_topical_mask=tensor.lmatrix('source_topical_mask')
topic_embedding=topical_transformer.apply(source_topical_word);
# Get training and development set streams
tr_stream = get_tr_stream_with_topic_target(**config)
# dev_stream = get_dev_tr_stream_with_topic_target(**config)
# Get cost of the model
representations = encoder.apply(source_sentence, source_sentence_mask)
tw_representation=topical_transformer.look_up.apply(source_topical_word.T);
content_embedding=representations[0,:,(representations.shape[2]/2):];
cost = decoder.cost(representations,
source_sentence_mask,
tw_representation,
source_topical_mask,
target_sentence,
target_sentence_mask,
target_topic_sentence,
target_topic_binary_sentence,
topic_embedding,content_embedding)
logger.info('Creating computational graph')
perplexity = tensor.exp(cost)
perplexity.name = 'perplexity'
cg = ComputationGraph(cost)
# costs_computer = function([target_sentence,
# target_sentence_mask,
# source_sentence,
# source_sentence_mask,source_topical_word,target_topic_sentence,target_topic_binary_sentence], (perplexity),on_unused_input='ignore')
# Initialize model
logger.info('Initializing model')
encoder.weights_init = decoder.weights_init = IsotropicGaussian(
config['weight_scale'])
encoder.biases_init = decoder.biases_init = Constant(0)
encoder.push_initialization_config()
decoder.push_initialization_config()
encoder.bidir.prototype.weights_init = Orthogonal()
decoder.transition.weights_init = Orthogonal()
encoder.initialize()
decoder.initialize()
topical_transformer.weights_init=IsotropicGaussian(
config['weight_scale']);
topical_transformer.biases_init=Constant(0);
topical_transformer.push_allocation_config();#don't know whether the initialize is for
topical_transformer.look_up.weights_init=Orthogonal();
topical_transformer.transformer.weights_init=Orthogonal();
topical_transformer.initialize();
# word_topical_embedding=cPickle.load(open(config['topical_embeddings'], 'rb'));
# np_word_topical_embedding=numpy.array(word_topical_embedding,dtype='float32');
# topical_transformer.look_up.W.set_value(np_word_topical_embedding);
topical_transformer.look_up.W.tag.role=[];
# apply dropout for regularization
if config['dropout'] < 1.0:
# dropout is applied to the output of maxout in ghog
logger.info('Applying dropout')
dropout_inputs = [x for x in cg.intermediary_variables
if x.name == 'maxout_apply_output']
cg = apply_dropout(cg, dropout_inputs, config['dropout'])
# Apply weight noise for regularization
if config['weight_noise_ff'] > 0.0:
logger.info('Applying weight noise to ff layers')
enc_params = Selector(encoder.lookup).get_params().values()
enc_params += Selector(encoder.fwd_fork).get_params().values()
enc_params += Selector(encoder.back_fork).get_params().values()
dec_params = Selector(
decoder.sequence_generator.readout).get_params().values()
dec_params += Selector(
decoder.sequence_generator.fork).get_params().values()
dec_params += Selector(decoder.state_init).get_params().values()
cg = apply_noise(
cg, enc_params+dec_params, config['weight_noise_ff'])
# Print shapes
shapes = [param.get_value().shape for param in cg.parameters]
logger.info("Parameter shapes: ")
for shape, count in Counter(shapes).most_common():
logger.info(' {:15}: {}'.format(shape, count))
logger.info("Total number of parameters: {}".format(len(shapes)))
# Print parameter names
enc_dec_param_dict = merge(Selector(encoder).get_parameters(),
Selector(decoder).get_parameters())
logger.info("Parameter names: ")
for name, value in enc_dec_param_dict.items():
logger.info(' {:15}: {}'.format(value.get_value().shape, name))
logger.info("Total number of parameters: {}"
.format(len(enc_dec_param_dict)))
# Set up training model
logger.info("Building model")
training_model = Model(cost)
# Set extensions
logger.info("Initializing extensions")
extensions = [
FinishAfter(after_n_batches=config['finish_after']),
TrainingDataMonitoring([perplexity], after_batch=True),
CheckpointNMT(config['saveto'],
config['model_name'],
every_n_batches=config['save_freq'])
]
# Plot cost in bokeh if necessary
if use_bokeh and BOKEH_AVAILABLE:
extensions.append(
Plot('Cs-En', channels=[['decoder_cost_cost']],
after_batch=True))
# Reload model if necessary
config['reload']=False
if config['reload']:
extensions.append(LoadNMT(config['saveto']))
initial_learning_rate = config['initial_learning_rate']
log_path = os.path.join(config['saveto'], 'log')
if config['reload'] and os.path.exists(log_path):
with open(log_path, 'rb') as source:
log = cPickle.load(source)
last = max(log.keys()) - 1
if 'learning_rate' in log[last]:
initial_learning_rate = log[last]['learning_rate']
# Set up training algorithm
logger.info("Initializing training algorithm")
parameters = cg.parameters
i = 0
parameters1 = []
for pram in parameters:
if i == 25 or i == 26 or i == 20 or i == 34:
i += 1
continue
else:
parameters1.append(pram)
i += 1
gradient= dict(equizip(cg.parameters, tensor.grad(cost, cg.parameters,
known_grads=None,consider_constant=None, disconnected_inputs = 'ignore')))
algorithm = GradientDescent(
cost=cost, parameters=cg.parameters,gradients=gradient,
step_rule=CompositeRule([Scale(initial_learning_rate),
StepClipping(config['step_clipping']),
eval(config['step_rule'])()]),
on_unused_sources='ignore')
_learning_rate = algorithm.step_rule.components[0].learning_rate
if config['learning_rate_decay']:
extensions.append(
LearningRateHalver(record_name='validation_cost',
comparator=lambda x, y: x > y,
learning_rate=_learning_rate,
patience_default=3))
else:
extensions.append(OldModelRemover(saveto=config['saveto']))
if config['learning_rate_grow']:
extensions.append(
LearningRateDoubler(record_name='validation_cost',
comparator=lambda x, y: x < y,
learning_rate=_learning_rate,
patience_default=3))
extensions.append(
SimplePrinting(config['model_name'], after_batch=True))
# Initialize main loop
logger.info("Initializing main loop")
main_loop = MainLoop(
model=training_model,
algorithm=algorithm,
data_stream=tr_stream,
extensions=extensions
)
# Train!
main_loop.run()
elif mode == 'translate':
config['tw_vocab_overlap'] = 'model/tw_overlap.pkl'
config['batch_size'] = 1
config['beam_size'] = 1
config['src_vocab_size'] = 30002
config['source_topic_vocab_size'] = 4496
config['trg_vocab_size'] = 30002
config['trg_topic_vocab_size'] = config['source_topic_vocab_size']
config['topical_word_num'] = 10
config['topical_embedding_dim'] = 100
logger.info('Creating theano variables')
sampling_input = tensor.lmatrix('source')
source_topical_word=tensor.lmatrix('source_topical')
tw_vocab_overlap=tensor.lmatrix('tw_vocab_overlap')
tw_vocab_overlap_matrix=cPickle.load(open(config['tw_vocab_overlap'], 'rb'));
tw_vocab_overlap_matrix=numpy.array(tw_vocab_overlap_matrix,dtype='int32');
#tw_vocab_overlap=shared(tw_vocab_overlap_matrix);
topic_embedding=topical_transformer.apply(source_topical_word);
sutils = SamplingBase()
unk_idx = config['unk_id']
src_eos_idx = config['src_vocab_size'] - 1
trg_eos_idx = config['trg_vocab_size'] - 1
trg_vocab = _ensure_special_tokens(
cPickle.load(open(config['trg_vocab'], 'rb')), bos_idx=0,
eos_idx=trg_eos_idx, unk_idx=unk_idx)
trg_ivocab = {v: k for k, v in trg_vocab.items()}
logger.info("Building sampling model")
sampling_representation = encoder.apply(
sampling_input, tensor.ones(sampling_input.shape))
topic_embedding=topical_transformer.apply(source_topical_word);
tw_representation=topical_transformer.look_up.apply(source_topical_word.T);
content_embedding=sampling_representation[0,:,(sampling_representation.shape[2]/2):];
generated = decoder.generate(sampling_input,sampling_representation, tw_representation,topical_embedding=topic_embedding,content_embedding=content_embedding);
_, samples = VariableFilter(
bricks=[decoder.sequence_generator], name="outputs")(
ComputationGraph(generated[1])) # generated[1] is next_outputs
beam_search = BeamSearch(samples=samples)
logger.info("Loading the model..")
model = Model(generated)
#loader = LoadNMT(config['saveto'])
loader = LoadNMT(config['validation_load']);
loader.set_model_parameters(model, loader.load_parameters_default())
logger.info("Started translation: ")
test_stream = get_dev_stream_with_topicalq(**config)
ts = test_stream.get_epoch_iterator()
rts = open(config['val_set_source']).readlines()
ftrans_original = open(config['val_output_orig'], 'w')
saved_weights = []
total_cost = 0.0
pbar = ProgressBar(max_value=len(rts)).start()
for i, (line, line_raw) in enumerate(zip(ts, rts)):
trans_in = line_raw.split()
seq = sutils._oov_to_unk(
line[0], config['src_vocab_size'], unk_idx)
seq1=line[1];
input_topical=numpy.tile(seq1,(config['beam_size'],1))
input_ = numpy.tile(seq, (config['beam_size'], 1))
# draw sample, checking to ensure we don't get an empty string back
trans, costs, attendeds, weights = \
beam_search.search(
input_values={sampling_input: input_,source_topical_word:input_topical,tw_vocab_overlap:tw_vocab_overlap_matrix},
tw_vocab_overlap=tw_vocab_overlap_matrix,
max_length=3*len(seq), eol_symbol=trg_eos_idx,
ignore_first_eol=True)
# normalize costs according to the sequence lengths
if config['normalized_bleu']:
lengths = numpy.array([len(s) for s in trans])
costs = costs / lengths
best = numpy.argsort(costs)[0]
try:
total_cost += costs[best]
trans_out = trans[best]
weight = weights[best][:, :len(trans_in)]
trans_out = sutils._idx_to_word(trans_out, trg_ivocab)
except ValueError:
logger.info(
"Can NOT find a translation for line: {}".format(i+1))
trans_out = '<UNK>'
saved_weights.append(weight)
print(' '.join(trans_out), file=ftrans_original)
pbar.update(i + 1)
pbar.finish()
logger.info("Total cost of the test: {}".format(total_cost))
cPickle.dump(saved_weights, open(config['attention_weights'], 'wb'))
ftrans_original.close()
# ap = afterprocesser(config)
# ap.main()
elif mode == 'score':
logger.info('Creating theano variables')
source_sentence = tensor.lmatrix('source')
source_sentence_mask = tensor.matrix('source_mask')
target_sentence = tensor.lmatrix('target')
target_sentence_mask = tensor.matrix('target_mask')
target_topic_sentence=tensor.lmatrix('target_topic');
target_topic_binary_sentence=tensor.lmatrix('target_binary_topic');
source_topical_word=tensor.lmatrix('source_topical')
topic_embedding=topical_transformer.apply(source_topical_word);
# Get cost of the model
representations = encoder.apply(source_sentence, source_sentence_mask)
costs = decoder.cost(representations,
source_sentence_mask,
target_sentence,
target_sentence_mask,
target_topic_sentence,
target_topic_binary_sentence,
topic_embedding)
config['batch_size'] = 1
config['sort_k_batches'] = 1
# Get test set stream
test_stream = get_tr_stream_with_topic_target(**config)
logger.info("Building sampling model")
logger.info("Loading the model..")
model = Model(costs)
loader = LoadNMT(config['validation_load'])
loader.set_model_parameters(model, loader.load_parameters_default())
costs_computer = function([target_sentence,
target_sentence_mask,
source_sentence,
source_sentence_mask,source_topical_word,target_topic_sentence,target_topic_binary_sentence], (costs),on_unused_input='ignore')
iterator = test_stream.get_epoch_iterator()
scores = []
att_weights = []
for i, (src, src_mask, trg, trg_mask,te,te_mask,tt,tt_mask,tb,tb_mask) in enumerate(iterator):
costs = costs_computer(*[trg, trg_mask, src, src_mask,te,tt,tb])
cost = costs.sum()
print(i, cost)
scores.append(cost)
print(sum(scores)/10007);