|
| 1 | +# This code is part of Qiskit. |
| 2 | +# |
| 3 | +# (C) Copyright IBM 2018, 2022. |
| 4 | +# |
| 5 | +# This code is licensed under the Apache License, Version 2.0. You may |
| 6 | +# obtain a copy of this license in the LICENSE.txt file in the root directory |
| 7 | +# of this source tree or at http://www.apache.org/licenses/LICENSE-2.0. |
| 8 | +# |
| 9 | +# Any modifications or derivative works of this code must retain this |
| 10 | +# copyright notice, and modified files need to carry a notice indicating |
| 11 | +# that they have been altered from the originals. |
| 12 | + |
| 13 | +"""Test Recursive Min Eigen Optimizer with legacy MinimumEigensolver.""" |
| 14 | + |
| 15 | +import unittest |
| 16 | +from test import QiskitOptimizationTestCase |
| 17 | + |
| 18 | +import numpy as np |
| 19 | + |
| 20 | +from qiskit import BasicAer |
| 21 | +from qiskit.utils import algorithm_globals, QuantumInstance |
| 22 | + |
| 23 | +from qiskit.algorithms import NumPyMinimumEigensolver, QAOA |
| 24 | + |
| 25 | +import qiskit_optimization.optionals as _optionals |
| 26 | +from qiskit_optimization.algorithms import ( |
| 27 | + MinimumEigenOptimizer, |
| 28 | + CplexOptimizer, |
| 29 | + RecursiveMinimumEigenOptimizer, |
| 30 | + WarmStartQAOAOptimizer, |
| 31 | + SlsqpOptimizer, |
| 32 | +) |
| 33 | +from qiskit_optimization.algorithms.recursive_minimum_eigen_optimizer import ( |
| 34 | + IntermediateResult, |
| 35 | +) |
| 36 | +from qiskit_optimization.problems import QuadraticProgram |
| 37 | +from qiskit_optimization.converters import ( |
| 38 | + IntegerToBinary, |
| 39 | + InequalityToEquality, |
| 40 | + LinearEqualityToPenalty, |
| 41 | + QuadraticProgramToQubo, |
| 42 | +) |
| 43 | + |
| 44 | + |
| 45 | +class TestRecursiveMinEigenOptimizer(QiskitOptimizationTestCase): |
| 46 | + """Recursive Min Eigen Optimizer Tests.""" |
| 47 | + |
| 48 | + @unittest.skipIf(not _optionals.HAS_CPLEX, "CPLEX not available.") |
| 49 | + def test_recursive_min_eigen_optimizer(self): |
| 50 | + """Test the recursive minimum eigen optimizer.""" |
| 51 | + filename = "op_ip1.lp" |
| 52 | + # get minimum eigen solver |
| 53 | + min_eigen_solver = NumPyMinimumEigensolver() |
| 54 | + |
| 55 | + # construct minimum eigen optimizer |
| 56 | + min_eigen_optimizer = MinimumEigenOptimizer(min_eigen_solver) |
| 57 | + recursive_min_eigen_optimizer = RecursiveMinimumEigenOptimizer( |
| 58 | + min_eigen_optimizer, min_num_vars=4 |
| 59 | + ) |
| 60 | + |
| 61 | + # load optimization problem |
| 62 | + problem = QuadraticProgram() |
| 63 | + lp_file = self.get_resource_path(filename, "algorithms/resources") |
| 64 | + problem.read_from_lp_file(lp_file) |
| 65 | + |
| 66 | + # solve problem with cplex |
| 67 | + cplex = CplexOptimizer() |
| 68 | + cplex_result = cplex.solve(problem) |
| 69 | + |
| 70 | + # solve problem |
| 71 | + result = recursive_min_eigen_optimizer.solve(problem) |
| 72 | + |
| 73 | + # analyze results |
| 74 | + np.testing.assert_array_almost_equal(cplex_result.x, result.x, 4) |
| 75 | + self.assertAlmostEqual(cplex_result.fval, result.fval) |
| 76 | + |
| 77 | + @unittest.skipIf(not _optionals.HAS_CPLEX, "CPLEX not available.") |
| 78 | + def test_recursive_history(self): |
| 79 | + """Tests different options for history.""" |
| 80 | + filename = "op_ip1.lp" |
| 81 | + # load optimization problem |
| 82 | + problem = QuadraticProgram() |
| 83 | + lp_file = self.get_resource_path(filename, "algorithms/resources") |
| 84 | + problem.read_from_lp_file(lp_file) |
| 85 | + |
| 86 | + # get minimum eigen solver |
| 87 | + min_eigen_solver = NumPyMinimumEigensolver() |
| 88 | + |
| 89 | + # construct minimum eigen optimizer |
| 90 | + min_eigen_optimizer = MinimumEigenOptimizer(min_eigen_solver) |
| 91 | + |
| 92 | + # no history |
| 93 | + recursive_min_eigen_optimizer = RecursiveMinimumEigenOptimizer( |
| 94 | + min_eigen_optimizer, |
| 95 | + min_num_vars=4, |
| 96 | + history=IntermediateResult.NO_ITERATIONS, |
| 97 | + ) |
| 98 | + result = recursive_min_eigen_optimizer.solve(problem) |
| 99 | + self.assertIsNotNone(result.replacements) |
| 100 | + self.assertIsNotNone(result.history) |
| 101 | + self.assertIsNotNone(result.history[0]) |
| 102 | + self.assertEqual(len(result.history[0]), 0) |
| 103 | + self.assertIsNone(result.history[1]) |
| 104 | + |
| 105 | + # only last iteration in the history |
| 106 | + recursive_min_eigen_optimizer = RecursiveMinimumEigenOptimizer( |
| 107 | + min_eigen_optimizer, |
| 108 | + min_num_vars=4, |
| 109 | + history=IntermediateResult.LAST_ITERATION, |
| 110 | + ) |
| 111 | + result = recursive_min_eigen_optimizer.solve(problem) |
| 112 | + self.assertIsNotNone(result.replacements) |
| 113 | + self.assertIsNotNone(result.history) |
| 114 | + self.assertIsNotNone(result.history[0]) |
| 115 | + self.assertEqual(len(result.history[0]), 0) |
| 116 | + self.assertIsNotNone(result.history[1]) |
| 117 | + |
| 118 | + # full history |
| 119 | + recursive_min_eigen_optimizer = RecursiveMinimumEigenOptimizer( |
| 120 | + min_eigen_optimizer, |
| 121 | + min_num_vars=4, |
| 122 | + history=IntermediateResult.ALL_ITERATIONS, |
| 123 | + ) |
| 124 | + result = recursive_min_eigen_optimizer.solve(problem) |
| 125 | + self.assertIsNotNone(result.replacements) |
| 126 | + self.assertIsNotNone(result.history) |
| 127 | + self.assertIsNotNone(result.history[0]) |
| 128 | + self.assertGreater(len(result.history[0]), 1) |
| 129 | + self.assertIsNotNone(result.history[1]) |
| 130 | + |
| 131 | + @unittest.skipIf(not _optionals.HAS_CPLEX, "CPLEX not available.") |
| 132 | + def test_recursive_warm_qaoa(self): |
| 133 | + """Test the recursive optimizer with warm start qaoa.""" |
| 134 | + seed = 1234 |
| 135 | + algorithm_globals.random_seed = seed |
| 136 | + backend = BasicAer.get_backend("statevector_simulator") |
| 137 | + qaoa = QAOA( |
| 138 | + quantum_instance=QuantumInstance( |
| 139 | + backend=backend, seed_simulator=seed, seed_transpiler=seed |
| 140 | + ), |
| 141 | + reps=1, |
| 142 | + ) |
| 143 | + warm_qaoa = WarmStartQAOAOptimizer( |
| 144 | + pre_solver=SlsqpOptimizer(), relax_for_pre_solver=True, qaoa=qaoa |
| 145 | + ) |
| 146 | + |
| 147 | + recursive_min_eigen_optimizer = RecursiveMinimumEigenOptimizer(warm_qaoa, min_num_vars=4) |
| 148 | + |
| 149 | + # load optimization problem |
| 150 | + problem = QuadraticProgram() |
| 151 | + lp_file = self.get_resource_path("op_ip1.lp", "algorithms/resources") |
| 152 | + problem.read_from_lp_file(lp_file) |
| 153 | + |
| 154 | + # solve problem with cplex |
| 155 | + cplex = CplexOptimizer(cplex_parameters={"threads": 1, "randomseed": 1}) |
| 156 | + cplex_result = cplex.solve(problem) |
| 157 | + |
| 158 | + # solve problem |
| 159 | + result = recursive_min_eigen_optimizer.solve(problem) |
| 160 | + |
| 161 | + # analyze results |
| 162 | + np.testing.assert_array_almost_equal(cplex_result.x, result.x, 4) |
| 163 | + self.assertAlmostEqual(cplex_result.fval, result.fval) |
| 164 | + |
| 165 | + def test_converter_list(self): |
| 166 | + """Test converter list""" |
| 167 | + op = QuadraticProgram() |
| 168 | + op.integer_var(0, 3, "x") |
| 169 | + op.binary_var("y") |
| 170 | + |
| 171 | + op.maximize(linear={"x": 1, "y": 2}) |
| 172 | + op.linear_constraint(linear={"y": 1, "x": 1}, sense="LE", rhs=3, name="xy_leq") |
| 173 | + |
| 174 | + # construct minimum eigen optimizer |
| 175 | + min_eigen_solver = NumPyMinimumEigensolver() |
| 176 | + min_eigen_optimizer = MinimumEigenOptimizer(min_eigen_solver) |
| 177 | + # a single converter |
| 178 | + qp2qubo = QuadraticProgramToQubo() |
| 179 | + recursive_min_eigen_optimizer = RecursiveMinimumEigenOptimizer( |
| 180 | + min_eigen_optimizer, min_num_vars=2, converters=qp2qubo |
| 181 | + ) |
| 182 | + result = recursive_min_eigen_optimizer.solve(op) |
| 183 | + self.assertEqual(result.fval, 4) |
| 184 | + # a list of converters |
| 185 | + ineq2eq = InequalityToEquality() |
| 186 | + int2bin = IntegerToBinary() |
| 187 | + penalize = LinearEqualityToPenalty() |
| 188 | + converters = [ineq2eq, int2bin, penalize] |
| 189 | + recursive_min_eigen_optimizer = RecursiveMinimumEigenOptimizer( |
| 190 | + min_eigen_optimizer, min_num_vars=2, converters=converters |
| 191 | + ) |
| 192 | + result = recursive_min_eigen_optimizer.solve(op) |
| 193 | + self.assertEqual(result.fval, 4) |
| 194 | + # invalid converters |
| 195 | + with self.assertRaises(TypeError): |
| 196 | + invalid = [qp2qubo, "invalid converter"] |
| 197 | + RecursiveMinimumEigenOptimizer(min_eigen_optimizer, min_num_vars=2, converters=invalid) |
| 198 | + |
| 199 | + |
| 200 | +if __name__ == "__main__": |
| 201 | + unittest.main() |
0 commit comments