-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtest.py
157 lines (121 loc) · 4.92 KB
/
test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
import argparse
import functools
import os
import pathlib
import sys
import torch
import ruamel.yaml as yaml
from datetime import datetime
import tools
from parallel import Parallel, Damy
from expr import LS_Imagine, make_env, make_dataset
os.environ["MUJOCO_GL"] = "osmesa"
sys.path.append(str(pathlib.Path(__file__).parent))
to_np = lambda x: x.detach().cpu().numpy()
def main(config):
tools.set_seed_everywhere(config.seed)
if config.deterministic_run:
tools.enable_deterministic_run()
logdir = pathlib.Path(config.logdir).expanduser()
logdir = logdir / config.task
logdir = logdir / 'seed_{}'.format(config.seed)
timestamp = datetime.now().strftime('%Y%m%dT%H%M%S')
logdir = logdir / timestamp
config.logdir = logdir
config.evaldir = config.evaldir or logdir / "eval_eps"
logdir.mkdir(parents=True, exist_ok=True)
config.evaldir.mkdir(parents=True, exist_ok=True)
step = 0
logger = tools.Logger(config, logdir, config.action_repeat * step)
if config.offline_evaldir: # False
directory = config.offline_evaldir.format(**vars(config))
else:
directory = config.evaldir
eval_eps = tools.load_episodes(directory, limit=1)
make = lambda mode, id: make_env(config, mode, id)
suite, task = config.task.split("_", 1)
from envs.tasks import get_specs
kwargs=dict(
# log_dir=log_dir,
target_item=config.target_item
)
task_id, task_specs, sim_specs = get_specs(task, **kwargs) # Note: additional kwargs end up in task_specs dict
config.episode_max_steps = task_specs['terminal_specs']['max_steps']
task_specs['concentration_specs']['max_steps'] = task_specs['terminal_specs']['max_steps']
task_specs['concentration_specs']['gaussian_reward_weight'] = config.gaussian_reward_weight
task_specs['concentration_specs']['gaussian_sigma_weight'] = config.gaussian_sigma_weight
task_specs['clip_specs']['target_object'] = task_specs['success_specs']['all']['item']['type'] if 'all' in task_specs['success_specs'] else task_specs['success_specs']['any']['item']['type']
eval_envs = [make("eval", i) for i in range(config.envs)]
if config.parallel:
eval_envs = [Parallel(env, "process") for env in eval_envs]
else:
eval_envs = [Damy(env) for env in eval_envs]
acts = eval_envs[0].action_space
config.num_actions = acts.n if hasattr(acts, "n") else acts.shape[0]
step_calculator = tools.ScoreStorage(max_steps=config.episode_max_steps)
state = None
print("Start evaluation.")
eval_dataset = make_dataset(eval_eps, config)
agent = LS_Imagine(
eval_envs[0].observation_space,
eval_envs[0].action_space,
config,
logger,
eval_dataset,
).to(config.device)
checkpoint_path = pathlib.Path(config.agent_checkpoint_dir) / "latest.pt"
print(checkpoint_path)
if checkpoint_path.exists():
print("Loading checkpoint from", config.agent_checkpoint_dir)
checkpoint = torch.load(checkpoint_path)
agent.load_state_dict(checkpoint["agent_state_dict"])
tools.recursively_load_optim_state_dict(agent, checkpoint["optims_state_dict"])
agent._should_pretrain._once = False
else:
raise ValueError("no checkpoint found")
if config.eval_episode_num > 0:
eval_policy = functools.partial(agent, training=False)
tools.simulate(
eval_policy,
eval_envs,
eval_eps,
config.evaldir,
logger,
step_calculator,
config.episode_max_steps,
config.discount,
is_eval=True,
episodes=config.eval_episode_num,
is_training=False,
)
if config.video_pred_log:
video_pred = agent._wm.video_pred(next(eval_dataset))
logger.video("eval_openl", to_np(video_pred))
for env in eval_envs:
try:
env.close()
except Exception:
pass
logger.finish()
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--configs", nargs="+")
args, remaining = parser.parse_known_args()
configs = yaml.safe_load(
(pathlib.Path(sys.argv[0]).parent / "configs.yaml").read_text()
)
def recursive_update(base, update):
for key, value in update.items():
if isinstance(value, dict) and key in base:
recursive_update(base[key], value)
else:
base[key] = value
name_list = ["defaults", *args.configs] if args.configs else ["defaults"]
defaults = {}
for name in name_list:
recursive_update(defaults, configs[name])
parser = argparse.ArgumentParser()
for key, value in sorted(defaults.items(), key=lambda x: x[0]):
arg_type = tools.args_type(value)
parser.add_argument(f"--{key}", type=arg_type, default=arg_type(value))
main(parser.parse_args(remaining))