-
Notifications
You must be signed in to change notification settings - Fork 1.5k
/
479_Largest_Palindrome_Product.java
49 lines (40 loc) · 1.88 KB
/
479_Largest_Palindrome_Product.java
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
class Solution {
public int largestPalindrome(int n) {
// https://leetcode.com/problems/largest-palindrome-product/discuss/96297/Java-Solution-using-assumed-max-palindrom
// if input is 1 then max is 9
if(n == 1){
return 9;
}
// if n = 3 then upperBound = 999 and lowerBound = 99
int upperBound = (int) Math.pow(10, n) - 1, lowerBound = upperBound / 10;
long maxNumber = (long) upperBound * (long) upperBound;
// represents the first half of the maximum assumed palindrom.
// e.g. if n = 3 then maxNumber = 999 x 999 = 998001 so firstHalf = 998
int firstHalf = (int)(maxNumber / (long) Math.pow(10, n));
boolean palindromFound = false;
long palindrom = 0;
while (!palindromFound) {
// creates maximum assumed palindrom
// e.g. if n = 3 first time the maximum assumed palindrom will be 998 899
palindrom = createPalindrom(firstHalf);
// here i and palindrom/i forms the two factor of assumed palindrom
for (long i = upperBound; upperBound > lowerBound; i--) {
// if n= 3 none of the factor of palindrom can be more than 999 or less than square root of assumed palindrom
if (palindrom / i > maxNumber || i * i < palindrom) {
break;
}
// if two factors found, where both of them are n-digits,
if (palindrom % i == 0) {
palindromFound = true;
break;
}
}
firstHalf--;
}
return (int) (palindrom % 1337);
}
private long createPalindrom(long num) {
String str = num + new StringBuilder().append(num).reverse().toString();
return Long.parseLong(str);
}
}