forked from feihuzhang/GANet
-
Notifications
You must be signed in to change notification settings - Fork 0
/
evaluation.py
251 lines (223 loc) · 8.61 KB
/
evaluation.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
from __future__ import print_function
import argparse
import skimage
import skimage.io
import skimage.transform
from PIL import Image
import sys
import os
import re
from struct import unpack
import torch
import torch.nn.parallel
from torch.autograd import Variable
# from torch.utils.data import DataLoader
from models.GANet_deep import GANet
# from dataloader.data import get_test_set
import numpy as np
parser = argparse.ArgumentParser(description="PyTorch GANet Example")
parser.add_argument("--crop_height", type=int, required=True, help="crop height")
parser.add_argument("--crop_width", type=int, required=True, help="crop width")
parser.add_argument("--max_disp", type=int, default=192, help="max disp")
parser.add_argument("--resume", type=str, default="", help="resume from saved model")
parser.add_argument("--cuda", type=bool, default=True, help="use cuda?")
parser.add_argument("--kitti", type=int, default=0, help="kitti dataset? Default=False")
parser.add_argument(
"--kitti2015", type=int, default=0, help="kitti 2015? Default=False"
)
parser.add_argument("--data_path", type=str, required=True, help="data root")
parser.add_argument("--test_list", type=str, required=True, help="training list")
parser.add_argument(
"--save_path", type=str, default="./result/", help="location to save result"
)
parser.add_argument(
"--threshold", type=float, default=3.0, help="threshold of error rates"
)
parser.add_argument("--multi_gpu", type=int, default=0, help="multi_gpu choice")
opt = parser.parse_args()
print(opt)
cuda = opt.cuda
# cuda = True
if cuda and not torch.cuda.is_available():
raise Exception("No GPU found, please run without --cuda")
# print('===> Loading datasets')
# test_set = get_test_set(opt.data_path, opt.test_list, [opt.crop_height, opt.crop_width], false, opt.kitti, opt.kitti2015)
# testing_data_loader = DataLoader(dataset=test_set, num_workers=opt.threads, batch_size=opt.testBatchSize, shuffle=False)
print("===> Building model")
model = GANet(opt.max_disp)
if cuda:
model = torch.nn.DataParallel(model).cuda()
if opt.resume:
if os.path.isfile(opt.resume):
print("=> loading checkpoint '{}'".format(opt.resume))
checkpoint = torch.load(opt.resume)
model.load_state_dict(checkpoint["state_dict"], strict=False)
else:
print("=> no checkpoint found at '{}'".format(opt.resume))
def readPFM(file):
with open(file, "rb") as f:
# Line 1: PF=>RGB (3 channels), Pf=>Greyscale (1 channel)
type = f.readline().decode("latin-1")
if "PF" in type:
channels = 3
elif "Pf" in type:
channels = 1
else:
sys.exit(1)
# Line 2: width height
line = f.readline().decode("latin-1")
width, height = re.findall("\d+", line)
width = int(width)
height = int(height)
# Line 3: +ve number means big endian, negative means little endian
line = f.readline().decode("latin-1")
BigEndian = True
if "-" in line:
BigEndian = False
# Slurp all binary data
samples = width * height * channels
buffer = f.read(samples * 4)
# Unpack floats with appropriate endianness
if BigEndian:
fmt = ">"
else:
fmt = "<"
fmt = fmt + str(samples) + "f"
img = unpack(fmt, buffer)
img = np.reshape(img, (height, width))
img = np.flipud(img)
return img, height, width
def test_transform(temp_data, crop_height, crop_width):
_, h, w = np.shape(temp_data)
if h <= crop_height and w <= crop_width:
temp = temp_data
temp_data = np.zeros([6, crop_height, crop_width], "float32")
temp_data[:, crop_height - h : crop_height, crop_width - w : crop_width] = temp
else:
start_x = int((w - crop_width) / 2)
start_y = int((h - crop_height) / 2)
temp_data = temp_data[
:, start_y : start_y + crop_height, start_x : start_x + crop_width
]
left = np.ones([1, 3, crop_height, crop_width], "float32")
left[0, :, :, :] = temp_data[0:3, :, :]
right = np.ones([1, 3, crop_height, crop_width], "float32")
right[0, :, :, :] = temp_data[3:6, :, :]
return torch.from_numpy(left).float(), torch.from_numpy(right).float(), h, w
def load_data(leftname, rightname):
left = Image.open(leftname)
right = Image.open(rightname)
size = np.shape(left)
height = size[0]
width = size[1]
temp_data = np.zeros([6, height, width], "float32")
left = np.asarray(left)
right = np.asarray(right)
r = left[:, :, 0]
g = left[:, :, 1]
b = left[:, :, 2]
temp_data[0, :, :] = (r - np.mean(r[:])) / np.std(r[:])
temp_data[1, :, :] = (g - np.mean(g[:])) / np.std(g[:])
temp_data[2, :, :] = (b - np.mean(b[:])) / np.std(b[:])
r = right[:, :, 0]
g = right[:, :, 1]
b = right[:, :, 2]
# r,g,b,_ = right.split()
temp_data[3, :, :] = (r - np.mean(r[:])) / np.std(r[:])
temp_data[4, :, :] = (g - np.mean(g[:])) / np.std(g[:])
temp_data[5, :, :] = (b - np.mean(b[:])) / np.std(b[:])
return temp_data
def test(leftname, rightname, savename):
input1, input2, height, width = test_transform(
load_data(leftname, rightname), opt.crop_height, opt.crop_width
)
input1 = Variable(input1, requires_grad=False)
input2 = Variable(input2, requires_grad=False)
model.eval()
if cuda:
input1 = input1.cuda()
input2 = input2.cuda()
with torch.no_grad():
prediction = model(input1, input2)
temp = prediction.cpu()
temp = temp.detach().numpy()
if height <= opt.crop_height and width <= opt.crop_width:
temp = temp[
0,
opt.crop_height - height : opt.crop_height,
opt.crop_width - width : opt.crop_width,
]
else:
temp = temp[0, :, :]
skimage.io.imsave(savename, (temp * 256).astype("uint16"))
return temp
if __name__ == "__main__":
file_path = opt.data_path
file_list = opt.test_list
f = open(file_list, "r")
filelist = f.readlines()
avg_error = 0
avg_rate = 0
for index in range(len(filelist)):
current_file = filelist[index]
if opt.kitti2015:
leftname = file_path + "image_2/" + current_file[0 : len(current_file) - 1]
rightname = file_path + "image_3/" + current_file[0 : len(current_file) - 1]
dispname = (
file_path + "disp_occ_0/" + current_file[0 : len(current_file) - 1]
)
savename = opt.save_path + current_file[0 : len(current_file) - 1]
disp = Image.open(dispname)
disp = np.asarray(disp) / 256.0
elif opt.kitti:
leftname = (
file_path + "colored_0/" + current_file[0 : len(current_file) - 1]
)
rightname = (
file_path + "colored_1/" + current_file[0 : len(current_file) - 1]
)
dispname = file_path + "disp_occ/" + current_file[0 : len(current_file) - 1]
savename = opt.save_path + current_file[0 : len(current_file) - 1]
disp = Image.open(dispname)
disp = np.asarray(disp) / 256.0
else:
leftname = (
opt.data_path
+ "frames_finalpass/"
+ current_file[0 : len(current_file) - 1]
)
rightname = (
opt.data_path
+ "frames_finalpass/"
+ current_file[0 : len(current_file) - 14]
+ "right/"
+ current_file[len(current_file) - 9 : len(current_file) - 1]
)
dispname = (
opt.data_path
+ "disparity/"
+ current_file[0 : len(current_file) - 4]
+ "pfm"
)
savename = opt.save_path + str(index) + ".png"
disp, height, width = readPFM(dispname)
prediction = test(leftname, rightname, savename)
mask = np.logical_and(disp >= 0.001, disp <= opt.max_disp)
error = np.mean(np.abs(prediction[mask] - disp[mask]))
rate = np.sum(np.abs(prediction[mask] - disp[mask]) > opt.threshold) / np.sum(
mask
)
avg_error += error
avg_rate += rate
print(
"===> Frame {}: ".format(index)
+ current_file[0 : len(current_file) - 1]
+ " ==> EPE Error: {:.4f}, Error Rate: {:.4f}".format(error, rate)
)
avg_error = avg_error / len(filelist)
avg_rate = avg_rate / len(filelist)
print(
"===> Total {} Frames ==> AVG EPE Error: {:.4f}, AVG Error Rate: {:.4f}".format(
len(filelist), avg_error, avg_rate
)
)