-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
114 lines (95 loc) · 4.45 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
import matplotlib.pyplot as plt
import matplotlib.colors
import matplotlib as mpl
import numpy as np
import json
from enum import Enum, auto
import tikzplotlib
from VAMASparse import VAMASparser
from VAMASspecs import *
from vamas_helpers import *
class PlotType(Enum):
spectra = auto()
high_res = auto()
depth = auto()
def main():
config_folder = 'configs/'
config_file = 'ITOSAcontrol_depth.json'
# this variable inserts a vertical offset between spectra for readability
# recommended to adjust until it looks right
offset = 5000
id_to_peak = {'In':'Indium 3d5', 'Sn': 'Tin 3d', 'O': 'Oxygen 1s', 'C': 'Carbon 1s'}
SMALL_SIZE = 12
MEDIUM_SIZE = 14
BIGGER_SIZE = 16
plt.rc('font', size=SMALL_SIZE) # controls default text sizes
plt.rc('axes', titlesize=SMALL_SIZE) # fontsize of the axes title
plt.rc('axes', labelsize=MEDIUM_SIZE) # fontsize of the x and y labels
plt.rc('xtick', labelsize=SMALL_SIZE) # fontsize of the tick labels
plt.rc('ytick', labelsize=SMALL_SIZE) # fontsize of the tick labels
plt.rc('legend', fontsize=SMALL_SIZE) # legend fontsize
plt.rc('figure', titlesize=BIGGER_SIZE) # fontsize of the figure title
with open(config_folder+config_file) as json_file:
config = json.load(json_file)
filepath = config['filepath']
filenames = config['filenames']
labels = config['labels']
colors = config['colors']
plotType = PlotType[config['plot type']]
parsers = []
for filename in filenames:
parser = VAMASparser(filepath+filename)
experiment, blocks = parser.read_VAMAS()
parsers.append(parser)
if plotType == PlotType.spectra:
x, y = plot_spectra(parsers, labels, colors, offset)
elif plotType == PlotType.high_res:
for i in range(len(blocks)):
for j, parser in enumerate(parsers):
x, y, xunits, xlabel, yunits, ylabel = get_binding_vs_y(parser)
block_identifier = parser.get_block_data(VAMASBlockHeader.block_identifier, i)
plt.plot(x, y, label=labels[j], color=colors[j])
plot_formatting(x, xunits, yunits, ylabel)
plt.title(block_identifier)
plt.show()
elif plotType == PlotType.depth:
unique_identifiers = {}
for parser in parsers:
for i in range(len(blocks)):
for j, parser in enumerate(parsers):
x, y, xunits, xlabel, yunits, ylabel = get_binding_vs_y(parser, i)
block_identifier = parser.get_block_data(VAMASBlockHeader.block_identifier, i)
if block_identifier[:2] not in unique_identifiers:
print(block_identifier)
unique_identifiers[block_identifier[:2]] = [[], []]
unique_identifiers[block_identifier[:2]][0].append(x)
unique_identifiers[block_identifier[:2]][1].append(y)
for identifier, coords in unique_identifiers.items():
xs = coords[0]
ys = coords[1]
cmap_colors = [colorFader(colors[0], colors[1], i/len(xs[1:])) for i in range(len(xs))]
for i, (x, y) in enumerate(zip(xs[1:], ys[1:])):
plt.plot(x, [yi-i*offset for yi in y], color=cmap_colors[i])
cmap = matplotlib.colors.ListedColormap(cmap_colors)
norm = mpl.colors.Normalize(0, config['sputter stop'])
cb1 = plt.colorbar(mpl.cm.ScalarMappable(norm=norm, cmap=cmap), label='Sputter Time [min]')
cb1.ax.invert_yaxis()
plot_formatting(x, xunits, yunits, ylabel, legend=False)
plt.title(id_to_peak[identifier.strip()])
tikzplotlib.save(identifier+'_tikzplot.tex')
plt.savefig(identifier+'.svg')
plt.show()
#plt.show()
if config['acsummry'] == "True":
x, ys, elmt_labels = read_acsummry(filepath+config['acname'])
linetypes = np.flip(['-', ':', '--', '-.'])
for i, (y, label) in enumerate(zip(np.flip(ys, 0), np.flip(elmt_labels))):
plt.plot(x, y, label=label, linestyle=linetypes[i], color=colorFader('black', 'gray', i/2))
plt.xlabel('Sputter Time [min]')
plt.ylim((0, 100))
plt.ylabel('Atomic Concentration [%]')
plt.legend()
plt.savefig('acsummary.svg')
plt.show()
if __name__ == '__main__':
main()