-
Notifications
You must be signed in to change notification settings - Fork 739
/
Copy pathpr_generate_labels.py
179 lines (143 loc) · 7 KB
/
pr_generate_labels.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
import copy
import re
from functools import partial
from typing import List, Tuple
from jinja2 import Environment, StrictUndefined
from pr_agent.algo.ai_handlers.base_ai_handler import BaseAiHandler
from pr_agent.algo.ai_handlers.litellm_ai_handler import LiteLLMAIHandler
from pr_agent.algo.pr_processing import get_pr_diff, retry_with_fallback_models
from pr_agent.algo.token_handler import TokenHandler
from pr_agent.algo.utils import load_yaml, set_custom_labels, get_user_labels
from pr_agent.config_loader import get_settings
from pr_agent.git_providers import get_git_provider
from pr_agent.git_providers.git_provider import get_main_pr_language
from pr_agent.log import get_logger
class PRGenerateLabels:
def __init__(self, pr_url: str, args: list = None,
ai_handler: partial[BaseAiHandler,] = LiteLLMAIHandler):
"""
Initialize the PRGenerateLabels object with the necessary attributes and objects for generating labels
corresponding to the PR using an AI model.
Args:
pr_url (str): The URL of the pull request.
args (list, optional): List of arguments passed to the PRGenerateLabels class. Defaults to None.
"""
# Initialize the git provider and main PR language
self.git_provider = get_git_provider()(pr_url)
self.main_pr_language = get_main_pr_language(
self.git_provider.get_languages(), self.git_provider.get_files()
)
self.pr_id = self.git_provider.get_pr_id()
# Initialize the AI handler
self.ai_handler = ai_handler()
self.ai_handler.main_pr_language = self.main_pr_language
# Initialize the variables dictionary
self.vars = {
"title": self.git_provider.pr.title,
"branch": self.git_provider.get_pr_branch(),
"description": self.git_provider.get_pr_description(full=False),
"language": self.main_pr_language,
"diff": "", # empty diff for initial calculation
"extra_instructions": get_settings().pr_description.extra_instructions,
"commit_messages_str": self.git_provider.get_commit_messages(),
"enable_custom_labels": get_settings().config.enable_custom_labels,
"custom_labels_class": "", # will be filled if necessary in 'set_custom_labels' function
}
# Initialize the token handler
self.token_handler = TokenHandler(
self.git_provider.pr,
self.vars,
get_settings().pr_custom_labels_prompt.system,
get_settings().pr_custom_labels_prompt.user,
)
# Initialize patches_diff and prediction attributes
self.patches_diff = None
self.prediction = None
async def run(self):
"""
Generates a PR labels using an AI model and publishes it to the PR.
"""
try:
get_logger().info(f"Generating a PR labels {self.pr_id}")
if get_settings().config.publish_output:
self.git_provider.publish_comment("Preparing PR labels...", is_temporary=True)
await retry_with_fallback_models(self._prepare_prediction)
get_logger().info(f"Preparing answer {self.pr_id}")
if self.prediction:
self._prepare_data()
else:
return None
pr_labels = self._prepare_labels()
if get_settings().config.publish_output:
get_logger().info(f"Pushing labels {self.pr_id}")
current_labels = self.git_provider.get_pr_labels()
user_labels = get_user_labels(current_labels)
pr_labels = pr_labels + user_labels
if self.git_provider.is_supported("get_labels"):
self.git_provider.publish_labels(pr_labels)
elif pr_labels:
value = ', '.join(v for v in pr_labels)
pr_labels_text = f"## PR Labels:\n{value}\n"
self.git_provider.publish_comment(pr_labels_text, is_temporary=False)
self.git_provider.remove_initial_comment()
except Exception as e:
get_logger().error(f"Error generating PR labels {self.pr_id}: {e}")
return ""
async def _prepare_prediction(self, model: str) -> None:
"""
Prepare the AI prediction for the PR labels based on the provided model.
Args:
model (str): The name of the model to be used for generating the prediction.
Returns:
None
Raises:
Any exceptions raised by the 'get_pr_diff' and '_get_prediction' functions.
"""
get_logger().info(f"Getting PR diff {self.pr_id}")
self.patches_diff = get_pr_diff(self.git_provider, self.token_handler, model)
get_logger().info(f"Getting AI prediction {self.pr_id}")
self.prediction = await self._get_prediction(model)
async def _get_prediction(self, model: str) -> str:
"""
Generate an AI prediction for the PR labels based on the provided model.
Args:
model (str): The name of the model to be used for generating the prediction.
Returns:
str: The generated AI prediction.
"""
variables = copy.deepcopy(self.vars)
variables["diff"] = self.patches_diff # update diff
environment = Environment(undefined=StrictUndefined)
set_custom_labels(variables, self.git_provider)
self.variables = variables
system_prompt = environment.from_string(get_settings().pr_custom_labels_prompt.system).render(variables)
user_prompt = environment.from_string(get_settings().pr_custom_labels_prompt.user).render(variables)
response, finish_reason = await self.ai_handler.chat_completion(
model=model,
temperature=get_settings().config.temperature,
system=system_prompt,
user=user_prompt
)
return response
def _prepare_data(self):
# Load the AI prediction data into a dictionary
self.data = load_yaml(self.prediction.strip())
def _prepare_labels(self) -> List[str]:
pr_types = []
# If the 'labels' key is present in the dictionary, split its value by comma and assign it to 'pr_types'
if 'labels' in self.data:
if type(self.data['labels']) == list:
pr_types = self.data['labels']
elif type(self.data['labels']) == str:
pr_types = self.data['labels'].split(',')
pr_types = [label.strip() for label in pr_types]
# convert lowercase labels to original case
try:
if "labels_minimal_to_labels_dict" in self.variables:
d: dict = self.variables["labels_minimal_to_labels_dict"]
for i, label_i in enumerate(pr_types):
if label_i in d:
pr_types[i] = d[label_i]
except Exception as e:
get_logger().error(f"Error converting labels to original case {self.pr_id}: {e}")
return pr_types