-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathmodel.py
182 lines (136 loc) · 5.15 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
import numpy as np
import torch
from transformers import (
RealmConfig,
RealmReader,
RealmRetriever,
RealmScorer,
RealmForOpenQA,
RealmTokenizerFast,
load_tf_weights_in_realm,
)
from transformers.models.realm.retrieval_realm import convert_tfrecord_to_np
def add_additional_documents(openqa, additional_documents_path):
documents = np.load(additional_documents_path, allow_pickle=True)
total_documents = documents.shape[0]
retriever = openqa.retriever
tokenizer = openqa.retriever.tokenizer
# docs
retriever.block_records = np.concatenate((retriever.block_records, documents), axis=0)
# embeds
documents = [doc.decode() for doc in documents]
inputs = tokenizer(documents, padding=True, truncation=True, return_tensors="pt")
with torch.no_grad():
projected_score = openqa.embedder(**inputs, return_dict=True).projected_score
openqa.block_emb = torch.cat((openqa.block_emb, projected_score), dim=0)
openqa.config.num_block_records += total_documents
def get_openqa_tf_finetuned(args, config=None):
if config is None:
config = RealmConfig(hidden_act="gelu_new")
tokenizer = RealmTokenizerFast.from_pretrained("google/realm-cc-news-pretrained-embedder", do_lower_case=True)
block_records = convert_tfrecord_to_np(args.block_records_path, config.num_block_records)
retriever = RealmRetriever(block_records, tokenizer)
openqa = RealmForOpenQA(config, retriever)
openqa = load_tf_weights_in_realm(
openqa,
config,
args.checkpoint_path,
)
openqa = load_tf_weights_in_realm(
openqa,
config,
args.block_emb_path,
)
openqa.eval()
return openqa
def get_openqa_tf_pretrained(args, config=None):
if config is None:
config = RealmConfig(hidden_act="gelu_new")
tokenizer = RealmTokenizerFast.from_pretrained("google/realm-cc-news-pretrained-embedder", do_lower_case=True)
block_records = convert_tfrecord_to_np(args.block_records_path, config.num_block_records)
retriever = RealmRetriever(block_records, tokenizer)
openqa = RealmForOpenQA(config, retriever)
openqa = load_tf_weights_in_realm(
openqa,
config,
args.bert_path,
)
openqa = load_tf_weights_in_realm(
openqa,
config,
args.embedder_path,
)
openqa = load_tf_weights_in_realm(
openqa,
config,
args.block_emb_path,
)
openqa.eval()
return openqa
def get_openqa(args, config=None):
if config is None:
config = RealmConfig(hidden_act="gelu_new")
retriever = RealmRetriever.from_pretrained(args.checkpoint_pretrained_name)
openqa = RealmForOpenQA.from_pretrained(
args.checkpoint_pretrained_name,
retriever=retriever,
config=config,
)
openqa.eval()
return openqa
def get_scorer_reader_tokenizer_tf(args, config=None):
if config is None:
config = RealmConfig(hidden_act="gelu_new")
scorer = RealmScorer(config, args.block_records_path)
# Load retriever weights
scorer = load_tf_weights_in_realm(
scorer,
config,
args.retriever_path,
)
# Load block_emb weights
scorer = load_tf_weights_in_realm(
scorer,
config,
args.block_emb_path,
)
scorer.eval()
reader = RealmReader.from_pretrained(
args.checkpoint_path,
config=config,
from_tf=True,
)
reader.eval()
tokenizer = RealmTokenizerFast.from_pretrained("google/realm-cc-news-pretrained-embedder", do_lower_case=True)
return scorer, reader, tokenizer
def get_scorer_reader_tokenizer_pt_pretrained(args, config=None):
if config is None:
config = RealmConfig(hidden_act="gelu_new")
scorer = RealmScorer.from_pretrained(args.retriever_pretrained_name, args.block_records_path, config=config)
# Load block_emb weights
scorer = load_tf_weights_in_realm(
scorer,
config,
args.block_emb_path,
)
scorer.eval()
reader = RealmReader.from_pretrained(args.checkpoint_pretrained_name, config=config)
reader.eval()
tokenizer = RealmTokenizerFast.from_pretrained("google/realm-cc-news-pretrained-embedder", do_lower_case=True)
return scorer, reader, tokenizer
def get_scorer_reader_tokenizer_pt_finetuned(args, config=None):
if config is None:
config = RealmConfig(hidden_act="gelu_new")
scorer = RealmScorer.from_pretrained(args.retriever_pretrained_name, args.block_records_path, config=config)
scorer.eval()
reader = RealmReader.from_pretrained(args.checkpoint_pretrained_name, config=config)
reader.eval()
tokenizer = RealmTokenizerFast.from_pretrained("google/realm-cc-news-pretrained-embedder", do_lower_case=True)
return scorer, reader, tokenizer
def get_scorer_reader_tokenizer(args, config=None):
if config is None:
config = RealmConfig(hidden_act="gelu_new")
scorer = RealmScorer(config, args.block_records_path)
reader = RealmReader(config)
tokenizer = RealmTokenizerFast.from_pretrained("google/realm-cc-news-pretrained-embedder", do_lower_case=True)
return scorer, reader, tokenizer