-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathrun_finetune.py
305 lines (244 loc) · 11.8 KB
/
run_finetune.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
import logging
import os
from argparse import ArgumentParser
import torch
from torch.nn.utils import clip_grad_norm_
from tqdm import tqdm
from data import DataCollator, normalize_answer
from data import load as load_dataset
from model import get_openqa, add_additional_documents
from transformers import RealmConfig, RealmForOpenQA, RealmRetriever, get_linear_schedule_with_warmup
from transformers.models.realm.modeling_realm import logger as model_logger
model_logger.setLevel(logging.INFO)
formatter = logging.Formatter('%(asctime)s - %(message)s')
file_handler = logging.FileHandler('fine-tuning.log')
file_handler.setLevel(logging.INFO)
file_handler.setFormatter(formatter)
stream_handler = logging.StreamHandler()
stream_handler.setLevel(logging.INFO)
stream_handler.setFormatter(formatter)
logger = logging.getLogger()
logger.setLevel(logging.INFO)
logger.addHandler(file_handler)
logger.addHandler(stream_handler)
torch.set_printoptions(precision=8)
MAX_EPOCHS = 2
def get_arg_parser():
parser = ArgumentParser()
# Data processing
parser.add_argument("--dev_ratio", type=float, default=0.1,
help="The ratio of development set which will be splitted from training set.")
parser.add_argument("--max_answer_tokens", type=int, default=5,
help="Answers below max_answer_tokens will be used for training and evaluation.")
# Training dir
parser.add_argument("--dataset_name_path", type=str, default=r"natural_questions",
help="Dataset name or path. Currently available datasets: natural_questions and web_questions. See data.py for more details.")
parser.add_argument("--dataset_cache_dir", type=str, default=r"./data/dataset_cache_dir/",
help="Directory storing dataset caches.")
parser.add_argument("--model_dir", type=str, default=r"./out/",
help="Directory storing resulting models. ")
# Training hparams
parser.add_argument("--ckpt_interval", type=int, default=5000,
help="Number of steps the checkpoint will be saved.")
parser.add_argument("--device", type=str, default='cpu',
help="Device used for training and evaluation.")
parser.add_argument("--is_train", action="store_true",
help="If specified, training mode is set; otherwise, evaluation mode is set.")
parser.add_argument("--learning_rate", type=float, default=1e-5,
help="Learning rate.")
parser.add_argument("--searcher_beam_size", type=int, default=5000,
help="Searcher (Retriever) beam size.")
parser.add_argument("--reader_beam_size", type=int, default=5,
help="Reader beam size.")
group = parser.add_mutually_exclusive_group()
group.add_argument("--num_training_steps", type=int, default=100,
help="Number of training steps.")
group.add_argument("--num_epochs", type=int, default=0,
help="Number of training epochs.")
# Evaluation hparams
parser.add_argument("--checkpoint_name", type=str, default="checkpoint",
help="Checkpoint name for evalutaion.")
parser.add_argument("--checkpoint_step", type=int, default=5000,
help="Checkpoint step for evalutaion.")
# Model path
parser.add_argument("--checkpoint_pretrained_name", type=str, default=r"google/realm-cc-news-pretrained-openqa",
help="Pretrained checkpoint for fine-tuning.")
parser.add_argument("--additional_documents_path", type=str, default=None,
help="Additional document entries for retrieval. Must be .npy format.")
return parser
def compute_eval_metrics(labels, predicted_answer, reader_output):
"""Compute eval metrics."""
# []
exact_match = torch.index_select(
torch.index_select(
reader_output.reader_correct,
dim=0,
index=reader_output.block_idx
),
dim=1,
index=reader_output.candidate
)
def _official_exact_match(predicted_answer, references):
return torch.tensor(max(
[normalize_answer(predicted_answer) == normalize_answer(reference) for reference in references]
))
official_exact_match = _official_exact_match(predicted_answer, labels)
eval_metric = dict(
exact_match=exact_match[0][0],
official_exact_match=official_exact_match,
reader_oracle=torch.any(reader_output.reader_correct)
)
for k in (5, 10, 50, 100, 500, 1000, 5000):
eval_metric["top_{}_match".format(k)] = torch.any(reader_output.retriever_correct[:k])
return eval_metric
def main(args):
training_dataset, dev_dataset, eval_dataset = load_dataset(args)
if args.is_train:
global_step = 1
starting_epoch = 1
config = RealmConfig(
searcher_beam_size=args.searcher_beam_size,
reader_beam_size=args.reader_beam_size,
)
openqa = get_openqa(args, config)
retriever = openqa.retriever
tokenizer = openqa.retriever.tokenizer
if args.additional_documents_path is not None:
add_additional_documents(openqa, args.additional_documents_path)
openqa.to(args.device)
# Setup data
logging.info(training_dataset)
logging.info(dev_dataset)
data_collector = DataCollator(args, tokenizer)
train_dataloader = torch.utils.data.DataLoader(
dataset=training_dataset,
batch_size=1,
shuffle=True,
collate_fn=data_collector
)
eval_dataloader = torch.utils.data.DataLoader(
dataset=dev_dataset,
batch_size=1,
shuffle=False,
collate_fn=data_collector
)
if args.num_epochs == 0:
args.num_epochs = MAX_EPOCHS
else:
args.num_training_steps = args.num_epochs * len(train_dataloader)
# Optimizer
# See: https://github.com/huggingface/transformers/blob/e239fc3b0baf1171079a5e0177a69254350a063b/examples/pytorch/language-modeling/run_mlm_no_trainer.py#L456-L468
no_decay = ["bias", "LayerNorm.weight"]
optimizer_grouped_parameters = [
{
"params": [p for n, p in openqa.named_parameters() if not any(nd in n for nd in no_decay)],
"weight_decay": 0.01,
},
{
"params": [p for n, p in openqa.named_parameters() if any(nd in n for nd in no_decay)],
"weight_decay": 0.0,
},
]
optimizer = torch.optim.AdamW(
optimizer_grouped_parameters,
lr=args.learning_rate,
weight_decay=0.01,
eps=1e-6,
)
lr_scheduler = get_linear_schedule_with_warmup(
optimizer=optimizer,
num_warmup_steps=min(10000, max(100,
int(args.num_training_steps / 10))),
num_training_steps=args.num_training_steps,
)
for epoch in range(starting_epoch, args.num_epochs + 1):
# Setup training mode
openqa.train()
for batch in train_dataloader:
optimizer.zero_grad()
question, answer_texts, answer_ids = batch
question_ids = tokenizer(question, return_tensors="pt").input_ids
reader_output, predicted_answer_ids = openqa(
input_ids=question_ids.to(args.device),
answer_ids=answer_ids,
return_dict=False,
)
predicted_answer = tokenizer.decode(predicted_answer_ids)
reader_output.loss.backward()
clip_grad_norm_(openqa.parameters(), 1.0, norm_type=2.0, error_if_nonfinite=False)
optimizer.step()
lr_scheduler.step()
logging.info(
f"Epoch: {epoch}, Step: {global_step}, Retriever Loss: {reader_output.retriever_loss.mean()}, Reader Loss: {reader_output.reader_loss.mean()}\nQuestion: {question}, Gold Answer: {tokenizer.batch_decode(answer_ids) if answer_ids != [[-1]] else None}, Predicted Answer: {predicted_answer}"
)
if global_step % args.ckpt_interval == 0:
logging.info(f"Saving checkpint at step {global_step}")
openqa.save_pretrained(os.path.join(args.model_dir, f"{args.checkpoint_name}-{global_step}"))
global_step += 1
if global_step >= args.num_training_steps:
break
# Setup eval mode
openqa.eval()
all_metrics = []
for batch in tqdm(eval_dataloader):
question, answer_texts, answer_ids = batch
question_ids = tokenizer(question, return_tensors="pt").input_ids
with torch.no_grad():
outputs = openqa(
input_ids=question_ids.to(args.device),
answer_ids=answer_ids,
return_dict=True,
)
predicted_answer = tokenizer.decode(outputs.predicted_answer_ids)
all_metrics.append(compute_eval_metrics(answer_texts, predicted_answer, outputs.reader_output))
stacked_metrics = {
metric_key : torch.stack((*map(lambda metrics: metrics[metric_key], all_metrics),)) for metric_key in all_metrics[0].keys()
}
logging.info(f"Step: {global_step}, Epoch: {epoch}")
logging.info('\n'.join(map(lambda metric: f"{metric[0]}:{metric[1].type(torch.float32).mean()}", stacked_metrics.items())))
if global_step >= args.num_training_steps:
break
logging.info(f"Saving final checkpoint at step {global_step}")
openqa.save_pretrained(os.path.join(args.model_dir, f"{args.checkpoint_name}-{global_step}"))
retriever.save_pretrained(os.path.join(args.model_dir, f"{args.checkpoint_name}-{global_step}"))
else:
retriever = RealmRetriever.from_pretrained(os.path.join(args.model_dir, f"{args.checkpoint_name}-{args.checkpoint_step}"))
tokenizer = retriever.tokenizer
openqa = RealmForOpenQA.from_pretrained(os.path.join(args.model_dir, f"{args.checkpoint_name}-{args.checkpoint_step}"), retriever)
openqa.config.searcher_beam_size = args.searcher_beam_size
openqa.config.reader_beam_size = args.reader_beam_size
if args.additional_documents_path is not None:
add_additional_documents(openqa, args.additional_documents_path)
# Setup eval mode
openqa.eval()
openqa.to(args.device)
# Setup data
logging.info(eval_dataset)
data_collector = DataCollator(args, tokenizer)
eval_dataloader = torch.utils.data.DataLoader(
dataset=eval_dataset,
batch_size=1,
shuffle=False,
collate_fn=data_collector
)
all_metrics = []
for batch in tqdm(eval_dataloader):
question, answer_texts, answer_ids = batch
question_ids = tokenizer(question, return_tensors="pt").input_ids
with torch.no_grad():
outputs = openqa(
input_ids=question_ids.to(args.device),
answer_ids=answer_ids,
return_dict=True,
)
predicted_answer = tokenizer.decode(outputs.predicted_answer_ids)
all_metrics.append(compute_eval_metrics(answer_texts, predicted_answer, outputs.reader_output))
stacked_metrics = {
metric_key : torch.stack((*map(lambda metrics: metrics[metric_key], all_metrics),)) for metric_key in all_metrics[0].keys()
}
logging.info('\n'.join(map(lambda metric: f"{metric[0]}:{metric[1].type(torch.float32).mean()}", stacked_metrics.items())))
if __name__ == "__main__":
logging.info("Test logging")
parser = get_arg_parser()
args = parser.parse_args()
main(args)