-
Notifications
You must be signed in to change notification settings - Fork 2
/
efficientdet_test.py
142 lines (107 loc) · 4.4 KB
/
efficientdet_test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
# Author: Zylo117
"""
Simple Inference Script of EfficientDet-Pytorch
"""
import time
import torch
from torch.backends import cudnn
from matplotlib import colors
from backbone import EfficientDetBackbone
import cv2
import numpy as np
from efficientdet.utils import BBoxTransform, ClipBoxes
from utils.utils import preprocess, invert_affine, postprocess, STANDARD_COLORS, standard_to_bgr, get_index_label, plot_one_box
import sys
class Logger(object):
def __init__(self, filename='default.log', stream=sys.stdout):
self.terminal = stream
self.log = open(filename, 'w')
def write(self, message):
self.terminal.write(message)
self.log.write(message)
def flush(self):
pass
sys.stdout = Logger('a.log', sys.stdout)
sys.stderr = Logger('a.log_file', sys.stderr)
compound_coef = 1
force_input_size = 1280 # set None to use default size
img_path = '/cluster/home/qiaotianwei/code/EfficientDet.Pytorch/data/bdd100k/images/100k/train/a7159126-3e14c391.jpg'
# replace this part with your project's anchor config
anchor_ratios = [(1.0, 1.0), (1.4, 0.7), (0.7, 1.4)]
anchor_scales = [2 ** 0, 2 ** (1.0 / 3.0), 2 ** (2.0 / 3.0)]
threshold = 0.2
iou_threshold = 0.2
use_cuda = True
use_float16 = False
cudnn.fastest = True
cudnn.benchmark = True
obj_list = ['car', 'bus', 'person', 'bike', 'truck', 'motor', 'train', 'rider', 'traffic sign', 'traffic light']
color_list = standard_to_bgr(STANDARD_COLORS)
# tf bilinear interpolation is different from any other's, just make do
input_sizes = [512, 640, 768, 896, 1024, 1280, 1280, 1536]
input_size = input_sizes[compound_coef] if force_input_size is None else force_input_size
ori_imgs, framed_imgs, framed_metas = preprocess(img_path, max_size=input_size)
if use_cuda:
x = torch.stack([torch.from_numpy(fi).cuda() for fi in framed_imgs], 0)
else:
x = torch.stack([torch.from_numpy(fi) for fi in framed_imgs], 0)
x = x.to(torch.float32 if not use_float16 else torch.float16).permute(0, 3, 1, 2)
model = EfficientDetBackbone(compound_coef=compound_coef, num_classes=len(obj_list),
ratios=anchor_ratios, scales=anchor_scales)
model.load_state_dict(torch.load(f'firstThinking/bdd100k/efficientdet-d1_40_45500.pth'))
model.requires_grad_(False)
model.eval()
if use_cuda:
model = model.cuda()
if use_float16:
model = model.half()
with torch.no_grad():
features, regression, classification, anchors = model(x)
regressBoxes = BBoxTransform()
clipBoxes = ClipBoxes()
out = postprocess(x,
anchors, regression, classification,
regressBoxes, clipBoxes,
threshold, iou_threshold)
def display(preds, imgs, imshow=True, imwrite=False):
for i in range(len(imgs)):
if len(preds[i]['rois']) == 0:
continue
for j in range(len(preds[i]['rois'])):
x1, y1, x2, y2 = preds[i]['rois'][j].astype(np.int)
obj = obj_list[preds[i]['class_ids'][j]]
score = float(preds[i]['scores'][j])
plot_one_box(imgs[i], [x1, y1, x2, y2], label=obj,score=score,color=color_list[get_index_label(obj, obj_list)])
if imshow:
cv2.imshow('img', imgs[i])
cv2.waitKey(0)
if imwrite:
cv2.imwrite(f'test/out.jpg', imgs[i])
out = invert_affine(framed_metas, out)
display(out, ori_imgs, imshow=False, imwrite=True)
print('running speed test...')
with torch.no_grad():
print('test1: model inferring and postprocessing')
print('inferring image for 10 times...')
t1 = time.time()
for _ in range(10):
_, regression, classification, anchors = model(x)
out = postprocess(x,
anchors, regression, classification,
regressBoxes, clipBoxes,
threshold, iou_threshold)
out = invert_affine(framed_metas, out)
t2 = time.time()
tact_time = (t2 - t1) / 10
print(f'{tact_time} seconds, {1 / tact_time} FPS, @batch_size 1')
# uncomment this if you want a extreme fps test
# print('test2: model inferring only')
# print('inferring images for batch_size 32 for 10 times...')
# t1 = time.time()
# x = torch.cat([x] * 32, 0)
# for _ in range(10):
# _, regression, classification, anchors = model(x)
#
# t2 = time.time()
# tact_time = (t2 - t1) / 10
# print(f'{tact_time} seconds, {32 / tact_time} FPS, @batch_size 32')