-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathload_data.py
51 lines (37 loc) · 1.42 KB
/
load_data.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
from datasets import DatasetDict, Dataset
import itertools
import re
import config
def split_text_into_chunks(context, max_length=config.max_length):
"""
Divide the text into paragraphs that do not exceed max_length characters,
and try to divide them into complete sentences as much as possible.
"""
sentences = re.split('([。?!]+)', context)
sentences = [sentences[i] + (sentences[i+1] if i+1 < len(sentences) else '')
for i in range(0, len(sentences), 2)]
chunks = []
current_chunk = ""
for sentence in sentences:
if len(current_chunk) + len(sentence) <= max_length:
current_chunk += sentence
else:
chunks.append(current_chunk)
current_chunk = sentence
if current_chunk:
chunks.append(current_chunk)
return chunks
def load_data():
raw_corpus = DatasetDict.load_from_disk('DailyM')['train']
corpus = []
for article in raw_corpus['article']:
corpus.extend(article.split('\n'))
corpus = [context.strip() for context in corpus]
corpus = [context for context in corpus if len(context) > 100]
corpus = list(itertools.chain.from_iterable(split_text_into_chunks(context) for context in corpus))
corpus = Dataset.from_dict({'context': corpus})
print('finish loading corpus: ')
print(corpus)
return corpus
if __name__ == '__main__':
load_data()