-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathhabitat_process.py
177 lines (159 loc) · 6.28 KB
/
habitat_process.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
import argparse
import math
import os
import logging
import shutil
import tempfile
from functools import partial
from multiprocessing import Pool, cpu_count
from typing import Optional, Set
import psutil
from osgeo import gdal
from yirgacheffe.layers import RasterLayer # type: ignore
logger = logging.getLogger(__name__)
logging.basicConfig(level=logging.INFO, format='%(asctime)s %(levelname)-8s %(message)s')
BLOCKSIZE = 512
def enumerate_subset(
habitat_path: str,
offset: int,
) -> Set[int]:
with RasterLayer.layer_from_file(habitat_path) as habitat_map:
blocksize = min(BLOCKSIZE, habitat_map.window.ysize - offset)
data = habitat_map.read_array(0, offset, habitat_map.window.xsize, blocksize)
values = data.flatten()
res = set(values)
return res
def enumerate_terrain_types(
habitat_path: str
) -> Set[int]:
with RasterLayer.layer_from_file(habitat_path) as habitat_map:
ysize = habitat_map.window.ysize
blocks = range(0, ysize, BLOCKSIZE)
logger.info("Enumerating habitat classes in raster...")
with Pool(processes=int(cpu_count() / 2)) as pool:
sets = pool.map(partial(enumerate_subset, habitat_path), blocks)
superset = set()
for s in sets:
superset.update(s)
return superset
def make_single_type_map(
habitat_path: str,
pixel_scale: Optional[float],
target_projection: Optional[str],
output_directory_path: str,
habitat_value: int | float,
) -> None:
gdal.SetCacheMax(264 * 1024 * 1024 * 1024)
# We could do this via yirgacheffe if it wasn't for the need to
# both rescale and reproject. So we do the initial filtering
# in that, but then bounce it to a temporary file for the
# warping
with tempfile.TemporaryDirectory() as tmpdir:
with RasterLayer.layer_from_file(habitat_path) as habitat_map:
calc = habitat_map.numpy_apply(lambda c: c == habitat_value)
with RasterLayer.empty_raster_layer_like(habitat_map, datatype=gdal.GDT_Byte) as filtered_map:
calc.save(filtered_map)
filename = f"lcc_{habitat_value}.tif"
tempname = os.path.join(tmpdir, filename)
dataset = filtered_map._dataset # pylint: disable=W0212
gdal.Warp(tempname, dataset, options=gdal.WarpOptions(
creationOptions=['COMPRESS=LZW', 'NUM_THREADS=16'],
multithread=True,
dstSRS=target_projection,
outputType=gdal.GDT_Float32,
xRes=pixel_scale,
yRes=((0.0 - pixel_scale) if pixel_scale else pixel_scale),
resampleAlg="average",
workingType=gdal.GDT_Float32
))
shutil.move(tempname, os.path.join(output_directory_path, filename))
def habitat_process(
habitat_path: str,
pixel_scale: Optional[float],
target_projection: Optional[str],
output_directory_path: str,
process_count: int
) -> None:
os.makedirs(output_directory_path, exist_ok=True)
with RasterLayer.layer_from_file(habitat_path) as habitat_map:
# The processing stage uses GDAL warp directly, with no chunking, so we should
# take a guess at how much memory we need based on the dimensions of the base map
pixels = habitat_map.window.xsize * habitat_map.window.ysize
# I really tried not to write this statement and use introspection, but nothing
# I tried gave a sensible answer. Normally I'd be more paranoid due to numpy bloat,
# but we're calling GDALwarp and passing it filenames, so everything should be done
# in the C++ world of GDAL, so I have more confidence that we won't see the usual
# 4x plus memory bloat of loading raster data into the python world.
match habitat_map.datatype:
case gdal.GDT_Byte | gdal.GDT_Int8:
pixel_size = 1
case gdal.GDT_CInt16 | gdal.GDT_Int16 | gdal.GDT_UInt16:
pixel_size = 2
case gdal.GDT_CFloat32 | gdal.GDT_CInt32 | gdal.GDT_Float32 | gdal.GDT_Int32:
pixel_size = 4
case _:
pixel_size = 8
estimated_memory = pixel_size * pixels
mem_stats = psutil.virtual_memory()
max_copies = math.floor((mem_stats.available * 0.5) / estimated_memory)
assert max_copies > 0
process_count = min(max_copies, process_count)
print(f"Estimating we can run {process_count} concurrent tasks")
# We need to know how many terrains there are. We could get this from the crosswalk
# table, but we can also work out the unique values ourselves. In practice this is
# worth the effort, otherwise we generate a lot of empty maps potentially.
habitats = enumerate_terrain_types(habitat_path)
with Pool(processes=process_count) as pool:
pool.map(
partial(make_single_type_map, habitat_path, pixel_scale, target_projection, output_directory_path),
habitats
)
def main() -> None:
parser = argparse.ArgumentParser(description="Downsample habitat map to raster per terrain type.")
parser.add_argument(
'--habitat',
type=str,
help="Path of initial combined habitat map.",
required=True,
dest="habitat_path"
)
parser.add_argument(
"--scale",
type=float,
required=True,
dest="pixel_scale",
help="Optional output pixel scale value, otherwise same as source."
)
parser.add_argument(
'--projection',
type=str,
help="Optional target projection, otherwise same as source.",
required=False,
dest="target_projection",
default=None
)
parser.add_argument(
"--output",
type=str,
required=True,
dest="output_path",
help="Destination folder for raster files."
)
parser.add_argument(
"-j",
type=int,
required=False,
default=round(cpu_count() / 2),
dest="processes_count",
help="Optional number of concurrent threads to use."
)
args = parser.parse_args()
habitat_process(
args.habitat_path,
args.pixel_scale,
args.target_projection,
args.output_path,
args.processes_count,
)
if __name__ == "__main__":
main()