-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathmain.py
56 lines (40 loc) · 2.25 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
"""main.py"""
import argparse
import numpy as np
import torch
from solver import Solver
from utilities.utils import str2bool
def main(args):
seed = args.seed
torch.manual_seed(seed)
np.random.seed(seed)
SPNN_solver = Solver(args)
if args.train:
SPNN_solver.train_model()
SPNN_solver.test_model()
if __name__ == "__main__":
parser = argparse.ArgumentParser(description='Structure Preserving Neural Networks')
# Study Case
parser.add_argument('--sys_name', default='double_pendulum', type=str, help='physical system name')
parser.add_argument('--train', default=False, type=str2bool, help='train or test')
# Dataset Parameters
parser.add_argument('--dset_dir', default='data', type=str, help='dataset directory')
parser.add_argument('--train_percent', default=0.8, type=float, help='dataset train snapshots split porcentage')
parser.add_argument('--dset_norm', default=True, type=str2bool, help='dataset normalization')
# Net Parameters
parser.add_argument('--hidden_vec', default=5*[50], nargs='+', type=int, help='layer vector of hidden layers (excluding input and output layers)')
parser.add_argument('--activation', default='relu', type=str, help='activation function')
# Training Parameters
parser.add_argument('--net_init', default='kaiming_uniform', type=str, help='net weight initialization')
parser.add_argument('--seed', default=1, type=int, help='random seed')
parser.add_argument('--lr', default=1e-3, type=float, help='learning rate')
parser.add_argument('--lambda_r', default=1e-5, type=float, help='regularizer')
parser.add_argument('--lambda_d', default=1e2, type=float, help='data loss weight')
parser.add_argument('--max_epoch', default=6000, type=int, help='maximum training iterations')
parser.add_argument('--miles', default=[2000, 4000], nargs='+', type=int, help='learning rate scheduler milestones')
parser.add_argument('--gamma', default=1e-1, type=float, help='learning rate milestone decay')
# Save and plot options
parser.add_argument('--output_dir', default='outputs', type=str, help='output directory')
parser.add_argument('--save_plots', default=True, type=str2bool, help='save test plots')
args = parser.parse_args()
main(args)