-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrsa.py
123 lines (94 loc) · 2.87 KB
/
rsa.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
import random
def rabinMiller(n, d):
a = random.randint(2, (n - 2) - 2)
x = pow(a, int(d), n) # a^d%n
if x == 1 or x == n - 1:
return True
while d != n - 1:
x = pow(x, 2, n)
d *= 2
if x == 1:
return False
elif x == n - 1:
return True
return False
def isPrime(n):
if n < 2:
return False
lowPrimes = [2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 101, 103, 107, 109, 113, 127, 131, 137, 139, 149, 151, 157, 163, 167, 173, 179, 181, 191, 193, 197, 199, 211, 223, 227, 229, 233, 239, 241, 251, 257, 263, 269, 271, 277, 281, 283, 293, 307, 311, 313, 317, 331, 337, 347, 349, 353, 359, 367, 373, 379, 383, 389, 397, 401, 409, 419, 421, 431, 433, 439, 443, 449, 457, 461, 463, 467, 479, 487, 491, 499, 503, 509, 521, 523, 541, 547, 557, 563, 569, 571, 577, 587, 593, 599, 601, 607, 613, 617, 619, 631, 641, 643, 647, 653, 659, 661, 673, 677, 683, 691, 701, 709, 719, 727, 733, 739, 743, 751, 757, 761, 769, 773, 787, 797, 809, 811, 821, 823, 827, 829, 839, 853, 857, 859, 863, 877, 881, 883, 887, 907, 911, 919, 929, 937, 941, 947, 953, 967, 971, 977, 983, 991, 997]
if n in lowPrimes:
return True
for prime in lowPrimes:
if n % prime == 0:
return False
c = n - 1
while c % 2 == 0:
c /= 2
for i in range(128):
if not rabinMiller(n, c):
return False
return True
def generateKeys(keysize=110000):
e = d = N = 0
p = generateLargePrime(keysize)
q = generateLargePrime(keysize)
N = p * q
print(f"p {p} | q {q}")
phiN = (p - 1) * (q - 1)
while True:
e = random.randrange(2 ** (keysize - 1), 2 ** keysize - 1)
if (isCoPrime(e, phiN)):
break
d = modularInv(e, phiN)
return e, d, N
def generateLargePrime(keysize):
while True:
num = random.randrange(2 ** (keysize - 1), 2 ** keysize - 1)
if (isPrime(num)):
return num
def isCoPrime(p, q):
return gcd(p, q) == 1
def gcd(p, q):
while q:
p, q = q, p % q
return p
def egcd(a, b):
s = 0; old_s = 1
t = 1; old_t = 0
r = b; old_r = a
while r != 0:
quotient = old_r // r
old_r, r = r, old_r - quotient * r
old_s, s = s, old_s - quotient * s
old_t, t = t, old_t - quotient * t
return old_r, old_s, old_t
def modularInv(a, b):
gcd, x, y = egcd(a, b)
if x < 0:
x += b
return x
def encrypt(e, N, msg):
cipher = ""
for c in msg:
m = ord(c)
cipher += str(pow(m, e, N)) + " "
return cipher
def decrypt(d, N, cipher):
msg = ""
parts = cipher.split()
for part in parts:
if part:
c = int(part)
msg += chr(pow(c, d, N))
return msg
def main():
keysize = 4
print(f"size {2**(keysize - 1)} - {2**keysize -1} ")
e, d, N = generateKeys(keysize)
msg = "hung nho nguyen minh"
enc = encrypt(e, N, msg)
print(f"Message: {msg}")
print(f"e: {e}")
print(f"N: {N}")
print(f"enc: {enc}")
main()