-
Notifications
You must be signed in to change notification settings - Fork 15
/
11-Colour_scales_and_legends.Rmd
659 lines (417 loc) · 22.1 KB
/
11-Colour_scales_and_legends.Rmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
# Colour Scales and Legends
```{r 11-library, include=FALSE}
library(ggplot2)
library(dplyr)
library(scico)
```
**Learning Objectives**
- Learn how to map values to colours in ggplot2
- Learn about colour theory (a more detailed exposition is available online at http://tinyurl.com/clrdtls)
## A little colour theory
There have been many attempts to come up with colours spaces that are more perceptually uniform. We’ll use a modern attempt called the HCL colour space, which has three components of hue, chroma and luminance:
-**Hue** ranges from 0 to 360 (an angle) and gives the “colour” of the colour (blue, red, orange, etc).
-**Chroma** is the “purity” of a colour, ranging from 0 (grey) to a maximum that varies with luminance.
-**Luminance** is the lightness of the colour, ranging from 0 (black) to 1 (white).
An additional complication is that many people (~10% of men) do not possess the normal complement of colour receptors and so can distinguish fewer colours than usual. In brief, it’s best to avoid red-green contrasts, and to check your plots with systems that simulate colour blindness. Visicheck (https://www.vischeck.com/vischeck/) is one online solution. Another alternative is the dichromat package34 which provides tools for simulating colour blindness, and a set of colour schemes known to work well for colour-blind people. You can also help people with colour blindness in the same way that you can help people with black-and-white printers: by providing redundant mappings to other aesthetics like size, line type or shape.
### Colour blindness
## Continuous colour scales
Colour gradients are often used to show the height of a 2d surface. The plots in this section use the surface of a 2d density estimate of the faithful dataset which records the waiting time between eruptions and during each eruption for the Old Faithful geyser in Yellowstone Park.
Any time I refer to scale_fill_*() in this section there is a corresponding scale_colour_*() for the colour aesthetic (or scale_color_*() if you prefer US spelling).
```{r continuous color scales 01, include=FALSE}
erupt <- ggplot(faithfuld, aes(waiting, eruptions, fill = density)) +
geom_raster() +
scale_x_continuous(NULL, expand = c(0, 0)) +
scale_y_continuous(NULL, expand = c(0, 0)) +
theme(legend.position = "none")
```
### Particular pallettes
There are multiple ways to specify continuous colour scales. You can use to construct your own palette, but it is unnecessary because there are many “hand picked” palettes available.
Ggplot2 supplies two scale functions that bundle pre-specified palettes, scale_fill_viridis_c() and scale_fill_distiller(). The viridis scales are designed to be perceptually uniform in both colour and when reduced to black and white, and to be perceptible to people with various forms of colour blindness.
```{r particular pallettes 01}
erupt
erupt + scale_fill_viridis_c()
erupt + scale_fill_viridis_c(option = "magma")
```
The second group of continuous colour scales built in to ggplot2 are derived from the ColorBrewer scales: scale_fill_brewer() provides these colours as discrete palettes, while scale_fill_distiller() and scale_fill_fermenter() are the continuous and binned analogs.
```{r particular pallette 02}
erupt + scale_fill_distiller()
erupt + scale_fill_distiller(palette = "RdPu")
erupt + scale_fill_distiller(palette = "YlOrBr")
```
scale_fill_scico() provides palettes that are perceptually uniform and suitable for scientific visualisation
```{r particular pallettes 03}
erupt + scico::scale_fill_scico(palette = "bilbao") # the default
erupt + scico::scale_fill_scico(palette = "vik")
erupt + scico::scale_fill_scico(palette = "lajolla")
```
A particularly useful package is paletteer which aims to provide a common interface.
```{r particular pallettes 04}
erupt + paletteer::scale_fill_paletteer_c("viridis::plasma")
erupt + paletteer::scale_fill_paletteer_c("scico::tokyo")
# erupt + paletteer::scale_fill_paletteer_c("gameofthrones::targaryen")
```
### Robust recipes
The default scale for continuous fill scales is scale_fill_continuous() which in turn defaults to scale_fill_gradient(). As a consequence, these three commands produce the same plot using a gradient scale.
```{r robust recipes 01}
erupt
erupt + scale_fill_continuous()
erupt + scale_fill_gradient()
```
Gradient scales provide a robust method for creating any colour scheme you like. You just specify two or more reference colours, and ggplot2 will interpolate linearly between them. Three functions that you can use for this purpose are
*scale_fill_gradient() produces a two-colour gradient
*scale_fill_gradient2() produces a three-colour gradient with specified midpoint
*scale_fill_gradientn() produces an n-colour gradient
```{r robust recipes 02}
erupt + scale_fill_gradient(low = "grey", high = "brown")
erupt + scale_fill_gradient2(low = "grey", mid = "white", high = "brown", midpoint = .02)
erupt + scale_fill_gradientn(colours = terrain.colors(7))
```
The Munsell colour system provides an easy way of specifying colours based on their hue, chroma and luminance. The munsell package provides easy access to the Munsell colours, which can then be used to specify a gradient scale. For more information on the munsell package see https://github.com/cwickham/munsell/.
```{r robust recipes 03}
munsell::hue_slice("5P") + # generate a ggplot with hue_slice()
annotate( # add arrows for annotation
geom = "segment",
x = c(7, 7),
y = c(1, 10),
xend = c(7, 7),
yend = c(2, 9),
arrow = arrow(length = unit(2, "mm"))
)
#> Warning: Removed 31 rows containing missing values (geom_text).
# construct scale
erupt + scale_fill_gradient(
low = munsell::mnsl("5P 2/12"),
high = munsell::mnsl("5P 7/12")
)
```
Three-point gradient scales typically convey the perceptual impression that there is a natural midpoint (often a zero value) from which the other values diverge. The left plot below shows how to create a divergent “yellow/blue” scale.
If you have colours that are meaningful for your data (e.g., black body colours or standard terrain colours), or you’d like to use a palette produced by another package, you may wish to use an n-point gradient. The middle and right plots below use the colorspace package. For more information on the colorspace package see https://colorspace.r-forge.r-project.org/.
```{r robust recipes 04}
# munsell example
erupt + scale_fill_gradient2(
low = munsell::mnsl("5B 7/8"),
high = munsell::mnsl("5Y 7/8"),
mid = munsell::mnsl("N 7/0"),
midpoint = .02
)
# colorspace examples
erupt + scale_fill_gradientn(colours = colorspace::heat_hcl(7))
erupt + scale_fill_gradientn(colours = colorspace::diverge_hcl(7))
```
### Missing values
All continuous colour scales have an na.value parameter that controls what colour is used for missing values (including values outside the range of the scale limits). By default it is set to grey, which will stand out when you use a colourful scale. If you use a black and white scale, you might want to set it to something else to make it more obvious. You can set na.value = NA to make missing values invisible, or choose a specific colour if you prefer:
```{r missing values 01}
df <- data.frame(x = 1, y = 1:5, z = c(1, 3, 2, NA, 5))
base <- ggplot(df, aes(x, y)) +
geom_tile(aes(fill = z), size = 5) +
labs(x = NULL, y = NULL)
base
base + scale_fill_gradient(na.value = NA)
base + scale_fill_gradient(na.value = "yellow")
```
### Limits, breaks and labels
You can suppress the breaks entirely by setting them to NULL. For axes, this removes the tick marks, grid lines, and labels; and for legends this removes the keys and labels.
```{r limits break and labels 01}
toy <- data.frame(
const = 1,
up = 1:4,
txt = letters[1:4],
big = (1:4)*1000,
log = c(2, 5, 10, 2000)
)
leg <- ggplot(toy, aes(up, up, fill = big)) +
geom_tile() +
labs(x = NULL, y = NULL)
leg + scale_fill_continuous(breaks = NULL)
```
### Legends
```{r continuous legends 01 }
base <- ggplot(mpg, aes(cyl, displ, colour = hwy)) +
geom_point(size = 2)
base
```
```{r continuous legends 02}
base + guides(colour = guide_colourbar(reverse = TRUE))
base + guides(colour = guide_colourbar(barheight = unit(2, "cm")))
base + guides(colour = guide_colourbar(direction = "horizontal"))
```
```{r continuous legends 03}
base + guides(colour = guide_colourbar(reverse = TRUE))
base + scale_colour_continuous(guide = guide_colourbar(reverse = TRUE))
```
## Discrete colour scales
Discrete colour and fill scales occur in many situations. A typical example is a barchart that encodes both position and fill to the same variable.
```{r discrete colour scales 01, include=FALSE}
df <- data.frame(x = c("a", "b", "c", "d"), y = c(3, 4, 1, 2))
bars <- ggplot(df, aes(x, y, fill = x)) +
geom_bar(stat = "identity") +
labs(x = NULL, y = NULL) +
theme(legend.position = "none")
```
The default scale for discrete colours is scale_fill_discrete() which in turn defaults to scale_fill_hue() so these are identical plots:
```{r discrete colour scales 02}
bars
bars + scale_fill_discrete()
bars + scale_fill_hue()
```
### Brewer scales
scale_colour_brewer() is a discrete colour scale that—along with the continuous analog scale_colour_distiller() and binned analog scale_colour_fermenter()—uses handpicked “ColorBrewer” colours taken from http://colorbrewer2.org/. These colours have been designed to work well in a wide variety of situations, although the focus is on maps and so the colours tend to work better when displayed in large areas. There are many different options:
```{r brewer scales 01}
RColorBrewer::display.brewer.all()
```
The first group of palettes are sequential scales that are useful when your discrete scale is ordered (e.g., rank data), and are available for continuous data using scale_colour_distiller(). For unordered categorical data, the palettes of most interest are those in the second group. ‘Set1’ and ‘Dark2’ are particularly good for points, and ‘Set2’, ‘Pastel1’, ‘Pastel2’ and ‘Accent’ work well for areas.
```{r brewer scales 02}
bars + scale_fill_brewer(palette = "Set1")
bars + scale_fill_brewer(palette = "Set2")
bars + scale_fill_brewer(palette = "Accent")
```
Note that no palette is uniformly good for all purposes. Scatter plots typically use small plot markers, and bright colours tend to work better than subtle ones:
```{r brewer scales 03}
# scatter plot
df <- data.frame(x = 1:3 + runif(30), y = runif(30), z = c("a", "b", "c"))
point <- ggplot(df, aes(x, y)) +
geom_point(aes(colour = z)) +
theme(legend.position = "none") +
labs(x = NULL, y = NULL)
# three palettes
point + scale_colour_brewer(palette = "Set1")
point + scale_colour_brewer(palette = "Set2")
point + scale_colour_brewer(palette = "Pastel1")
```
Bar plots usually contain large patches of colour, and bright colours can be overwhelming. Subtle colours tend to work better in this situation:
```{r brewer scales 04}
# bar plot
df <- data.frame(x = 1:3, y = 3:1, z = c("a", "b", "c"))
area <- ggplot(df, aes(x, y)) +
geom_bar(aes(fill = z), stat = "identity") +
theme(legend.position = "none") +
labs(x = NULL, y = NULL)
# three palettes
area + scale_fill_brewer(palette = "Set1")
area + scale_fill_brewer(palette = "Set2")
area + scale_fill_brewer(palette = "Pastel1")
```
### Hue and grey scales
The default colour scheme picks evenly spaced hues around the HCL colour wheel. This works well for up to about eight colours, but after that it becomes hard to tell the different colours apart. You can control the default chroma and luminance, and the range of hues, with the h, c and l arguments:
```{r hue and gey scales 01}
bars
bars + scale_fill_hue(c = 40)
bars + scale_fill_hue(h = c(180, 300))
```
One disadvantage of the default colour scheme is that because the colours all have the same luminance and chroma, when you print them in black and white, they all appear as an identical shade of grey. Noting this, if you are intending a discrete colour scale to be printed in black and white, it is better to use scale_fill_grey() which maps discrete data to grays, from light to dark:
```{r hue and grey scales 02}
bars + scale_fill_grey()
bars + scale_fill_grey(start = 0.5, end = 1)
bars + scale_fill_grey(start = 0, end = 0.5)
```
### Paleteer Scales
### Manual scales
If none of the hand-picked palettes is suitable, or if you have your own preferred colours, you can use scale_fill_manual() to set the colours manually. This can be useful if you wish to choose colours that highlight a secondary grouping structure or draw attention to different comparisons:
```{r discrete manual scales 01}
bars + scale_fill_manual(values = c("sienna1", "sienna4", "hotpink1", "hotpink4"))
bars + scale_fill_manual(values = c("tomato1", "tomato2", "tomato3", "tomato4"))
bars + scale_fill_manual(values = c("grey", "black", "grey", "grey"))
```
You can also use a named vector to specify colors to be assigned to each level which allows you to specify the levels in any order you like:
```{r discrete manual scales 02}
bars + scale_fill_manual(values = c(
"d" = "grey",
"c" = "grey",
"b" = "black",
"a" = "grey"
))
```
### Limits, breaks and labels
```{r discrete limits 01}
mpg_99 <- mpg %>% filter(year == 1999)
mpg_08 <- mpg %>% filter(year == 2008)
base_99 <- ggplot(mpg_99, aes(displ, hwy, colour = fl)) + geom_point()
base_08 <- ggplot(mpg_08, aes(displ, hwy, colour = fl)) + geom_point()
base_99
base_08
```
```{r dicrete limits 02}
base_99 + lims(colour = c("c", "d", "e", "p", "r"))
base_08 + lims(colour = c("c", "d", "e", "p", "r"))
```
```{r discrete limits 03}
base_99 +
lims(
x = c(1, 7),
y = c(10, 45),
colour = c("c", "d", "e", "p", "r")
)
base_08 +
lims(
x = c(1, 7),
y = c(10, 45),
colour = c("c", "d", "e", "p", "r")
)
```
```{r discrete limits 04}
base_99 +
scale_color_discrete(
limits = c("c", "d", "e", "p", "r"),
breaks = c("d", "p", "r"),
labels = c("diesel", "premium", "regular")
)
```
```{r discrete limits 05}
base_99 +
lims(x = c(1, 7), y = c(10, 45)) +
scale_color_discrete(
limits = c("c", "d", "e", "p", "r"),
breaks = c("d", "p", "r"),
labels = c("diesel", "premium", "regular")
)
base_08 +
lims(x = c(1, 7), y = c(10, 45)) +
scale_color_discrete(
limits = c("c", "d", "e", "p", "r"),
labels = c("compressed", "diesel", "ethanol", "premium", "regular")
)
```
### Legends
```{r discrete legends 01}
base <- ggplot(mpg, aes(drv, fill = factor(cyl))) + geom_bar()
base
base + guides(fill = guide_legend(ncol = 2))
base + guides(fill = guide_legend(ncol = 2, byrow = TRUE))
```
```{r dicrete legends 02}
base
base + guides(fill = guide_legend(reverse = TRUE))
```
```{r discrete legends 03}
base <- ggplot(mpg, aes(displ, hwy, colour = drv)) +
geom_point(size = 4, alpha = .2, stroke = 0)
base + guides(colour = guide_legend())
base + guides(colour = guide_legend(override.aes = list(alpha = 1)))
```
## Binned colour scales
Color scales also come in binned versions. The default scale is scale_fill_binned() which in turn defaults to scale_fill_steps(). These scales have an n.breaks argument that controls the number of discrete colour categories created by the scale. Counterintuitively—because the human visual system is very good at detecting edges—this can sometimes make a continuous colour gradient easier to perceive:
```{r binned colour scales 01}
erupt + scale_fill_binned()
```
```{r binned colour scales 02}
erupt + scale_fill_steps()
```
```{r binned colour scales 03}
erupt + scale_fill_steps(n.breaks = 8)
```
In other respects scale_fill_steps() is analogous to scale_fill_gradient(), and allows you to construct your own two-colour gradients. There is also a three-colour variant scale_fill_steps2() and n-colour scale variant scale_fill_stepsn() that behave similarly to their continuous counterparts:
```{r binned colour scales 04}
erupt + scale_fill_steps(low = "grey", high = "brown")
```
```{r binned colour scales 05}
erupt + scale_fill_steps2(low = "grey", mid = "white", high = "brown", midpoint = .02)
```
```{r binned colour scales 06}
erupt + scale_fill_stepsn(n.breaks = 12, colours = terrain.colors(12))
```
A brewer analog for binned scales also exists, and is called scale_fill_fermenter():
```{r binned colour scales 07}
erupt + scale_fill_fermenter(n.breaks = 9)
```
```{r binned colour scales 08}
erupt + scale_fill_fermenter(n.breaks = 9, palette = "Oranges")
```
```{r binned colour scales 09}
erupt + scale_fill_fermenter(n.breaks = 9, palette = "PuOr")
```
Note that like the discrete scale_fill_brewer()—and unlike the continuous scale_fill_distiller()—the binned function scale_fill_fermenter() does not interpolate between the brewer colours, and if you set n.breaks larger than the number of colours in the palette a warning message will appear and some colours will not be displayed.
### Limits, breaks and labels
### Legends
```{r binned legends 01}
base <- ggplot(mpg, aes(cyl, displ, colour = hwy)) +
geom_point(size = 2) +
scale_color_binned()
base
base + guides(colour = guide_coloursteps(show.limits = TRUE))
```
## Date Time Colour Scales
When a colour aesthetic is mapped to a date/time type, ggplot2 uses *scale_colour_date()* or *scale_colour_datetime()* to specify the scale. These are designed to handle date data, analogous to the date scales discussed in Section 10.2. These scales have *date_breaks* and *date_labels* arguments that make it a little easier to work with these data, as the slightly contrived example below illustrates:
```{r date time 01}
base <- ggplot(economics, aes(psavert, uempmed, colour = date)) +
geom_point()
base
base +
scale_colour_date(
date_breaks = "142 months",
date_labels = "%b %Y"
)
```
## Alpha scales
Alpha scales map the transparency of a shade to a value in the data and can be a convenient way to visually down-weight less important observations. *scale_alpha()* is an alias for *scale_alpha_continuous()* since that is the most common use of alpha, and it saves a bit of typing.
```{r alpha scales 01}
ggplot(faithfuld, aes(waiting, eruptions, alpha = density)) +
geom_raster(fill = "maroon") +
scale_x_continuous(expand = c(0, 0)) +
scale_y_continuous(expand = c(0, 0))
```
## Legend position
A number of settings that affect the overall display of the legends are controlled through the theme system. You’ll learn more about that in Section 18.2, but for now, all you need to know is that you modify theme settings with the *theme()* function.
The position and justification of legends are controlled by the theme setting *legend.position*, which takes values “right”, “left”, “top”, “bottom”, or “none” (no legend).
```{r legend position 02}
base <- ggplot(toy, aes(up, up)) +
geom_point(aes(colour = txt), size = 3) +
xlab(NULL) +
ylab(NULL)
base + theme(legend.position = "left")
base + theme(legend.position = "right") # the default
base + theme(legend.position = "bottom")
base + theme(legend.position = "none")
```
Switching between left/right and top/bottom modifies how the keys in each legend are laid out (horizontal or vertically), and how multiple legends are stacked (horizontal or vertically). If needed, you can adjust those options independently:
- **legend.direction**: layout of items in legends (“horizontal” or “vertical”).
- **legend.box**: arrangement of multiple legends (“horizontal” or “vertical”).
- **legend.box.just**: justification of each legend within the overall bounding box, when there are multiple legends (“top”, “bottom”, “left”, or “right”).
Alternatively, if there’s a lot of blank space in your plot you might want to place the legend inside the plot by setting *legend.position* to a numeric vector of length two.
The numbers represent a relative location in the panel area: c(0, 1) is the top-left corner and c(1, 0) is the bottom-right corner.
You control which corner of the legend the legend.position refers to with *legend.justification*, which is specified in a similar way. Unfortunately positioning the legend exactly where you want it requires a lot of trial and error.
```{r legend position 03}
base <- ggplot(toy, aes(up, up)) +
geom_point(aes(colour = txt), size = 3)
base +
theme(
legend.position = c(0, 1),
legend.justification = c(0, 1)
)
base +
theme(
legend.position = c(0.5, 0.5),
legend.justification = c(0.5, 0.5)
)
base +
theme(
legend.position = c(1, 0),
legend.justification = c(1, 0)
)
```
## Meeting Videos
### Cohort 1
`r knitr::include_url("https://www.youtube.com/embed/LSkVSJasHPY")`
<details>
<summary> Meeting chat log </summary>
```
00:59:06 June Choe: There's also a nice animation from wikipedia (the cylinder is squished because of perceptual inequality between hues) - https://upload.wikimedia.org/wikipedia/commons/transcoded/8/8d/SRGB_gamut_within_CIELCHuv_color_space_mesh.webm/SRGB_gamut_within_CIELCHuv_color_space_mesh.webm.480p.vp9.webm
```
</details>
`r knitr::include_url("https://www.youtube.com/embed/oQ-Jh9oHPbU")`
<details>
<summary> Meeting chat log </summary>
```
00:12:21 June Choe: BTW as of April 2021 v0.6.0 {viridis} got 3 more color palettes -- mako, rocket, and turbo --- https://sjmgarnier.github.io/viridis/articles/intro-to-viridis.html
00:20:41 June Choe: "for legends this removes the keys and labels" i guess?
00:22:34 June Choe: scale_fill_hue in turn uses scales::hue_pal(), if you want to use the default discrete color palette - https://scales.r-lib.org/reference/hue_pal.html
00:30:43 Federica Gazzelloni: really like this one: https://colorspace.r-forge.r-project.org/
00:35:02 Michael Haugen: https://github.com/rfordatascience/tidytuesday
00:35:56 Michael Haugen: When I have accessed data from TT I have usually read them in manually.
00:36:04 Michael Haugen: for example:
starbucks <- readr::read_csv('https://raw.githubusercontent.com/rfordatascience/tidytuesday/master/data/2021/2021-12-21/starbucks.csv')
00:46:06 Ryan Metcalf: PodCast Page: https://www.tidytuesday.com/
00:50:16 Michael Haugen: Ryan Almost took down TidyTuesday
00:50:46 Michael Haugen: Make sure to commit to main
00:50:52 Ryan S: lol
```
</details>