-
Notifications
You must be signed in to change notification settings - Fork 20
/
orderbookGetMarketParamDT_VTO.R
222 lines (186 loc) · 6.83 KB
/
orderbookGetMarketParamDT_VTO.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
library(markovchain)
library(data.table)
source('orderbookOU.R', echo=FALSE)
VTORatio<-function(tickDT){
nBuy=sum(tickDT=="buy")
nSell=sum(tickDT=="sell")
log(nBuy)-log(nSell)
}
getMarketParams<-function(fname,
#Time frame
TFrame=10,
#Time step
deltat=0.5,
#Open position frame
MY=10,
#Open position step
deltaY=1,
#Disbalance frame
MF=1,
# Disbalance step
deltaF=0.1,
# Price min step
deltaTick=1,
#Commision
eps=0.5,
# Invenory penalization (Risk)
gamma=2,
# Max market order size in lot
dzetamax=10,
#Spread Max
SMax=5,
# Orderbook max depth
levelF=2,
shiftvalue=5,
widthVTO=50){
# Load Dataset
load(fname)
# Clean and Filter Data
dfdate<-format(df$datetime[1], "%Y-%m-%d")
downlimit<-as.POSIXct(paste(dfdate,"10:00:00.000"))
uplimit<-as.POSIXct(paste(dfdate,"18:45:00.000"))
# df[,bidCum:=rowSums(.SD),.SDcols=paste("bidvolume",0:levelF,sep="")]
# df[,askCum:=rowSums(.SD),.SDcols=paste("askvolume",0:levelF,sep="")]
#' Spread S
df[,deltaS:=round(askprice0-bidprice0, abs(floor(log10(deltaTick))))]
#' Volume
#' Imbalance F
# df[,logF:=round(log(bidCum)-log(askCum),abs(floor(log10(deltaF))))]
df[,logF:=round(rollapply(buysell,width=widthVTO,FUN=VTORatio, fill=NA, align="right"),abs(floor(log10(deltaF))))]
#' Fair Price
df[,pricemid:=(askprice0+bidprice0)/2]
#Clean and Filter Data
df<-df[complete.cases(df)]
SMax<-SMax*deltaTick
df<-df[deltaS<=SMax & deltaS>0,]
df<-df[datetime>downlimit & datetime<uplimit]
MF<-ceiling(max(abs(df$logF)))
df<-df[abs(logF)<=MF]
#' Orderbook parameter Estimates:
#' TOTAL TIME
TT<-as.numeric(difftime(df[.N,datetime],df[1,datetime], unit="secs"))
df[,jumpS:=shift(deltaS,shiftvalue)-df$deltaS]
#' Spread jump intensivity lambdaS
lambdaS<-df[jumpS!=0,.N]/TT
#' Spread transition matrix roS
roS<- markovchainFit(data=df[jumpS!=0,deltaS])
SMax=nrow(roS$estimate)*deltaTick
#' Mean reversion parameter F alfaF
#' Volatility paramter F sigmaF
dtOU<-as.numeric(df[,mean(difftime(
shift(datetime,shiftvalue,type="lead"),datetime, unit="secs"),na.rm=TRUE)])
ouCoef<-ou.fit (df$logF,dtOU)
alfaF<-as.numeric(ouCoef["theta2"])
sigmaF<-as.numeric(ouCoef["theta3"])
#' Price jump intensivity lambdaJ1, lambdaJ2
df[,pricemidJump:=shift(pricemid, shiftvalue,type="lead")-pricemid]
pmJump1<-df[abs(pricemidJump)>=deltaTick/2 & abs(pricemidJump)<deltaTick]
lambdaJ1<-pmJump1[,.N]/TT
pmJump2<-df[abs(pricemidJump)>=deltaTick]
lambdaJ2<-pmJump2[,.N]/TT
#' prob. distribution parameters of directions of mid-price jumps beta1, beta2
psi1<-data.table(table(pmJump1$logF))
names(psi1)<-c("logF", "Freq")
psi1[,logF:=as.numeric(logF)]
psi1[,Freq:=Freq/pmJump1[,.N]]
psi1[,Prob:=cumsum(Freq)]
beta1<-as.numeric(coef(glm(Prob~logF-1,data=psi1, family=quasibinomial))[1])
psi1[,Fit:=1/(1+exp(-beta1*logF))]
psi2<-data.table(table(pmJump2$logF))
names(psi2)<-c("logF", "Freq")
psi2[,logF:=as.numeric(logF)]
psi2[,Freq:=Freq/pmJump2[,.N]]
psi2[,Prob:=cumsum(Freq)]
beta2<-as.numeric(coef(glm(Prob~logF-1,data=psi2, family=quasibinomial))[1])
psi2[,Fit:=1/(1+exp(-beta2*logF))]
#
# ggplot()+
# geom_point(data=psi2,aes(x=logF, y=Prob),color="mediumaquamarine")+
# geom_line(data=psi2,aes(x=logF, y=Fit),color="lightcoral")+
# ggtitle(paste("beta2 =",round(beta2,2), sep=" "))
#
#
# ggplot()+
# geom_point(data=psi1,aes(x=logF, y=Prob),color="mediumaquamarine")+
# geom_line(data=psi1,aes(x=logF, y=Fit),color="lightcoral")+
# ggtitle(paste("beta1 =",round(beta1,2), sep=" "))
# Market order jump intensivity at ask (lambdaMA) and bid size (lambdaMB)
lambdaMA<-df[,sum(price>=askprice0)]/TT
lambdaMB<-df[,sum(price<=bidprice0)]/TT
# Limit order fill rates dzeta0, dzeta1
h<-data.table(table(df[price<=df$bidprice0 | price>=df$askprice0,logF]))
names(h)<-c("logF", "Freq")
h[,logF:=as.numeric(logF)]
h[,Freq:=Freq/df[,.N]]
h[,Prob:=cumsum(Freq)]
dzeta<-as.numeric(coef(glm(Prob~logF, data=h, family=quasibinomial(link = "logit"))))
ff<-glm(Prob~logF, data=h, family=quasibinomial(link = "logit"))
#h$FitP<-predict(ff,type="response")
h$Fit<-1/(1+exp(-(dzeta[1]+dzeta[2]*h$logF)))
# ggplot()+
# geom_point(data=h,aes(x=-logF, y=Prob),color="mediumaquamarine")+
# geom_line(data=h,aes(x=-logF, y=Fit),color="lightcoral")#+
# geom_line(data=h,aes(x=logF, y=FitP),color="lightblue")
# Time Length in seconds
# Size of time step in seconds
TT<- seq(0,TFrame, by=deltat)
NT<-length(TT)
# Inventory grid bound in lot
# Inventorygrid step size in lot
YY<-seq(-MY, MY, by=deltaY)
NY<-length(YY)
# Depth imbalance grid bound
# Depth imbalance grid step size
FF<-seq(-MF, MF, by=deltaF)
NF<-length(FF)
# Tick size
# Commision
SS<-seq(deltaTick,SMax, by=deltaTick)
NS<-length(SS)
# Number of Monte Carlo simulation paths
NMC<-10000
# Initial cash
X0<-0
# Initial inventory
Y0<-0
# Initial mid-price of stock
P0<-52000
obMarketParam<-list(
dfdate=dfdate,
lambdaS=lambdaS,
roS=roS$estimate,
alfaF=alfaF,
sigmaF=sigmaF,
lambdaJ1=lambdaJ1,
lambdaJ2=lambdaJ2,
beta1=beta1,
beta2=beta2,
lambdaMA=lambdaMA,
lambdaMB=lambdaMB,
dzeta0=dzeta[1],
dzeta1=dzeta[2],
TFrame=TFrame,
deltat=deltat,
TT= TT,
NT=NT,
MY=MY,
deltaY=deltaY,
YY=YY,
NY= NY,
MF=MF,
deltaF=deltaF,
FF=FF,
NF=NF,
deltaTick=deltaTick,
eps=eps,
gamma=gamma,
dzetamax=dzetamax,
SMax=SMax,
SS=SS,
NS=NS,
NMC=NMC,
X0=X0,
Y0=Y0,
P0=P0
)
}