forked from tfunck/minc_keras
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathpredict.py
221 lines (180 loc) · 9.39 KB
/
predict.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
import numpy as np
import scipy as sp
import pandas as pd
from os.path import basename, exists, splitext
from os import makedirs
import matplotlib as mpl
#mpl.use('Agg')
import matplotlib.pyplot as plt
import matplotlib.gridspec as gridspec
from re import sub
from keras.models import load_model
from prepare_data import *
from glob import glob
from utils import *
import json
import argparse
from keras.utils import to_categorical
from keras.utils.generic_utils import get_custom_objects
get_custom_objects().update({"dice_metric": dice_metric})
def save_image(X_validate, X_predict, Y_validate ,output_fn, slices=None, nslices=25 ):
'''
Writes X_validate, X_predict, and Y_validate to a single png image. Unless specific slices are given, function will write <nslices> evenly spaced slices.
args:
X_validate -- slice of values input to model
X_predict -- slice of predicted values based on X_validate
Y_validate -- slice of predicted values
output_fn -- filename of output png file
slices -- axial slices to save to png file, None by default
nslices -- number of evenly spaced slices to save to png
returns: 0
'''
#if no slices are defined by user, set slices to evenly sampled slices along entire number of slices in 3d image volume
if slices == None : slices = range(0, X_validate.shape[0], int(X_validate.shape[0]/nslices) )
#set number of rows and columns in output image. currently, sqrt() means that the image will be a square, but this could be changed if a more vertical orientation is prefered
ncol=int(np.sqrt(nslices))
nrow=ncol
fig = plt.figure(1 )
#using gridspec because it seems to give a bit more control over the spacing of the images. define a nrow x ncol grid
#outer_grid = gridspec.GridSpec(nrow, ncol,wspace=0.0, hspace=0.0)
slice_index=0 #index value for <slices>
#iterate over columns and rows:
for col in range(ncol):
for row in range(nrow) :
s=slices[slice_index]
i=col*nrow+row+1
#normalize the three input numpy arrays. normalizing them independently is necessary so that they all have the same scale
A=normalize(X_validate[s])
B=normalize(Y_validate[s])
C=normalize(X_predict[s])
#print("\t\t", X_validate[s].max(), X_validate[s].min() , Y_validate[s].max(), Y_validate[s].min(), X_predict[s].max(), X_predict[s].min(),end='')
#print("\t\t", A.max(), A.min(), B.max(), B.min(), C.max(), C.min())
ABC = np.concatenate([A,B,C], axis=1)
#use imwshow to display all three images
ax1=plt.subplot(ncol, nrow, i)
plt.imshow(ABC, cmap='hot')
plt.axis('off')
slice_index+=1
del A
del B
del C
del ABC
plt.tight_layout( )
plt.subplots_adjust( wspace=0.01, hspace=0.1)
#outer_grid.tight_layout(fig, pad=0, h_pad=0, w_pad=0)
plt.savefig(output_fn, dpi=500, width=8000)
plt.clf()
return 0
def set_output_image_fn(pet_fn, predict_dir, verbose=1):
'''
set output directory for subject and create filename for image slices.
output images are saved according to <predict_dir>/<subject name>/...png
args:
pet_fn -- filename of pet image on which prection was based
predict_dir -- output directory for predicted images
verbose -- print output filename if 2 or greater, 0 by default
return:
image_fn -- output filename for slices
'''
pet_basename = splitext(basename(pet_fn))[0]
name=[ f for f in pet_basename.split('_') if 'sub' in f.split('-') ][0]
image_fn = predict_dir +os.sep + pet_basename + '_predict.png'
if verbose >= 2 : print('Saving to:', image_fn)
return image_fn
def predict_image(i, model, X_all, Y_all, pet_fn, predict_dir, start, end, loss, verbose=1):
'''
Slices the input numpy arrays to extract 3d volumes, creates output filename for subject, applies model to X_validate and then saves volume to png.
args:
i -- index number of image
X_all -- tensor loaded from .npy file with all X_validate stored in it
Y_all -- tensor loaded from .npy file with all Y_validate stored in it
pet_fn -- filename of pet image
predict_dir -- base directory for predicted images
samples_per_subject -- number of samples in <X_all> and <Y_all> per subject
return:
image_fn -- filename of png to which slices were saved
'''
#get image 3d volume from tensors
X_validate = X_all[start:end]
Y_validate = Y_all[start:end]
#set output filename for png file
image_fn = set_output_image_fn(pet_fn, predict_dir, verbose)
image_fn = sub('.png','_'+str(i)+'.png',image_fn)
print("Saving prediction to:", image_fn)
#apply model to X_validate to get predicted values
X_predict = model.predict(X_validate, batch_size = 1)
if type(X_predict) != type(np.array([])) : return 1
X_validate = X_validate.reshape(X_validate.shape[0:3])
if loss in categorical_functions :
X_predict = np.argmax(X_predict, axis=3)
else :
X_predict = X_predict.reshape(X_predict.shape[0:3])
Y_validate = Y_validate.reshape(Y_validate.shape[0:3])
#save slices from 3 numpy arrays to <image_fn>
save_image(X_validate, X_predict, Y_validate, image_fn)
del Y_validate
del X_validate
del X_predict
return image_fn
def predict(model_fn, predict_dir, data_dir, images_fn, loss, evaluate=False, category='test', images_to_predict=None, verbose=1 ):
'''
Applies model defined in <model_fn> to a set of validate images and saves results to png image
args:
model_fn -- name of model with stored network weights
target_dir -- name of target directory where output is saved
images_to_predict -- images to predict, can either be 'all' or a comma separated string with list of index values of images to save
return:
0
'''
images = pd.read_csv(images_fn)
#create new pandas data frame <images> that contains only images marked with category
images = images[ images.category == category]
images.index = range(images.shape[0])
nImages =images.shape[0]
#set which images within images will be predicted
if images_to_predict == 'all': images_to_predict = range(images.shape[0])
elif type(images_to_predict) == str : images_to_predict = [int(i) for i in images_to_predict.split(',')]
#otherwise run prediction for all images
else:
print('No images were specified for prediction.')
return 0
#check that the model exists and load it
if exists(model_fn) :
model = load_model(model_fn)
if verbose >= 1: print("Model successfully loaded", model)
else :
print('Error: could not find', model_fn)
exit(0)
#load data for prediction
x_fn=glob(data_dir + os.sep + category + '_x.npy')
y_fn=glob(data_dir + os.sep + category + '_y.npy')
if x_fn != [] : x_fn=x_fn[0]
if y_fn != [] : y_fn=y_fn[0]
X_all =np.load(x_fn)
Y_all = np.load(y_fn)
if verbose >= 1: print("Data loaded for prediction")
for i in images_to_predict:
if i==0 : start_sample = 0
else : start_sample = int(images.iloc[0:i,].valid_samples.sum())
end_sample = int(images.iloc[0:(i+1),].valid_samples.sum())
pet_fn=images.iloc[i,].pet
samples_per_subject = images.iloc[i,].valid_samples
print( images.iloc[i,])
#print(start_sample, end_sample)
print(os.path.basename(images.iloc[i,].pet), start_sample, end_sample)
#print(predict_dir)
predict_image(i, model, X_all, Y_all, pet_fn, predict_dir, start_sample, end_sample, loss, verbose)
if verbose >= 1: print("Prediction completed")
return 0
if __name__ == '__main__':
parser = argparse.ArgumentParser(description='Process inputs for predict.')
parser.add_argument('--model', dest='model_fn', type=str, help='model to use for prediction')
parser.add_argument('--target', dest='predict_dir', type=str, help='directory to save predicted images')
parser.add_argument('--data_dir', dest='data_dir', type=str, help='data_dir where npy file can be found')
parser.add_argument('--images', dest='images_fn', type=str, help='filename with images .csv with information about files')
parser.add_argument('--category', dest='category', type=str, default='test', help='Image cagetogry: train/validation/test')
parser.add_argument('--evaluate', dest='evaluate', default=False, action='store_true', help='Image cagetogry: train/validation/test')
parser.add_argument('--images_to_predict', dest='images_to_predict', type=str, default='all', help='either 1) \'all\' to predict all images OR a comma separated list of index numbers of images on which to perform prediction (by default perform none). example \'1,4,10\'' )
parser.add_argument('--verbose', dest='verbose', type=int, default=1, help='verbose level: 0=silent, 1=default')
args = parser.parse_args()
predict(model_fn=args.model_fn, predict_dir=args.predict_dir, data_dir=args.data_dir, images_fn=args.images_fn, evaluate=args.evaluate, category=args.category, images_to_predict=args.images_to_predict, verbose=args.verbose )