-
Notifications
You must be signed in to change notification settings - Fork 0
/
vectorAdd.cu
198 lines (159 loc) · 5.22 KB
/
vectorAdd.cu
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
/*
* In His Exalted Name
* Vector Addition - Sequential Code
* Ahmad Siavashi, Email: siavashi@aut.ac.ir
* 21/05/2018
*/
#define RUN_COUNT 10
#include <cuda_runtime.h>
#include "device_launch_parameters.h"
#include <omp.h>
#include <stdlib.h>
#include <stdio.h>
#include <time.h>
double starttime, elapsedtime;
double times_sum = 0;
int *allocateVector(int size);
void fillVector(int * v, size_t n);
void addVector(int * a, int *b, int *c, size_t n);
void printVector(int * v, size_t n);
cudaError_t addWithCuda(int *c, const int *a, const int *b, unsigned int size);
int main()
{
#ifndef _OPENMP
printf("OpenMP is not supported.\n");
return 0;
#endif
const int vectorSize = 1 << 26;
int *a, *b, *c;
for (int i = 0; i < RUN_COUNT; i++)
{
a = allocateVector(vectorSize);
b = allocateVector(vectorSize);
c = allocateVector(vectorSize);
fillVector(a, vectorSize);
fillVector(b, vectorSize);
// addVector(a, b, c, vectorSize);
addWithCuda(c, a, b, vectorSize);
// printVector(c, vectorSize);
free(a);
free(b);
free(c);
// report elapsed time
printf("[-] Time Elapsed: %f Secs\n", elapsedtime);
times_sum += elapsedtime;
}
printf("\n[-] The average running time was: %lf\n", times_sum / RUN_COUNT);
return EXIT_SUCCESS;
}
// Allocates vector in host
int *allocateVector(int size) {
return (int *) malloc(sizeof(int) * size);
}
// Fills a vector with data
void fillVector(int * v, size_t n) {
int i;
for (i = 0; i < n; i++) {
v[i] = i;
}
}
// Adds two vectors
void addVector(int * a, int *b, int *c, size_t n) {
// get starting time
starttime = omp_get_wtime();
int i;
for (i = 0; i < n; i++) {
c[i] = a[i] + b[i];
}
// get ending time and use it to determine elapsed time
elapsedtime = omp_get_wtime() - starttime;
}
// Prints a vector to the stdout.
void printVector(int * v, size_t n) {
int i;
printf("[-] Vector elements: ");
for (i = 0; i < n; i++) {
printf("%d, ", v[i]);
}
printf("\b\b \n");
}
__global__ void addKernel(int *c, const int *a, const int *b, const int vectorSize, const int elements_per_thread)
{
int start = (blockIdx.x * blockDim.x + threadIdx.x) * elements_per_thread;
for (int i = start; i - start < elements_per_thread && (i < vectorSize); i++) {
c[i] = a[i] + b[i];
}
}
cudaError_t addWithCuda(int *c, const int *a, const int *b, unsigned int size) {
int *dev_a = 0;
int *dev_b = 0;
int *dev_c = 0;
cudaError_t cudaStatus;
// Choose which GPU to run on, change this on a multi-GPU system.
cudaStatus = cudaSetDevice(0);
if (cudaStatus != cudaSuccess) {
fprintf(stderr, "cudaSetDevice failed! Do you have a CUDA-capable GPU installed?");
goto Error;
}
// Allocate GPU buffers for three vectors (two input, one output).
cudaStatus = cudaMalloc((void**)&dev_c, size * sizeof(int));
if (cudaStatus != cudaSuccess) {
fprintf(stderr, "cudaMalloc failed!");
goto Error;
}
cudaStatus = cudaMalloc((void**)&dev_a, size * sizeof(int));
if (cudaStatus != cudaSuccess) {
fprintf(stderr, "cudaMalloc failed!");
goto Error;
}
cudaStatus = cudaMalloc((void**)&dev_b, size * sizeof(int));
if (cudaStatus != cudaSuccess) {
fprintf(stderr, "cudaMalloc failed!");
goto Error;
}
// Copy input vectors from host memory to GPU buffers.
cudaStatus = cudaMemcpy(dev_a, a, size * sizeof(int), cudaMemcpyHostToDevice);
if (cudaStatus != cudaSuccess) {
fprintf(stderr, "cudaMemcpy failed!");
goto Error;
}
cudaStatus = cudaMemcpy(dev_b, b, size * sizeof(int), cudaMemcpyHostToDevice);
if (cudaStatus != cudaSuccess) {
fprintf(stderr, "cudaMemcpy failed!");
goto Error;
}
int ELEMENTS_PER_THREAD = 1;
dim3 NUM_THREADS(1024, 1, 1); // Threads per block
dim3 NUM_BLOCKS((size + (NUM_THREADS.x * ELEMENTS_PER_THREAD) - 1) / (NUM_THREADS.x * ELEMENTS_PER_THREAD), 1, 1);
printf("elements per thread: %d, threads per blocks: %d, blocks: %d\n", ELEMENTS_PER_THREAD, NUM_THREADS.x, NUM_BLOCKS.x);
// get starting time
starttime = omp_get_wtime();
// Launch a kernel on the GPU with one thread for each element.
addKernel<<<NUM_BLOCKS, NUM_THREADS>>>(dev_c, dev_a, dev_b, size, ELEMENTS_PER_THREAD);
// Check for any errors launching the kernel
cudaStatus = cudaGetLastError();
if (cudaStatus != cudaSuccess) {
fprintf(stderr, "addKernel launch failed: %s\n", cudaGetErrorString(cudaStatus));
goto Error;
}
// cudaDeviceSynchronize waits for the kernel to finish, and returns
// any errors encountered during the launch.
cudaStatus = cudaDeviceSynchronize();
if (cudaStatus != cudaSuccess) {
fprintf(stderr, "cudaDeviceSynchronize returned error code %d after launching addKernel!\n", cudaStatus);
goto Error;
}
// get ending time and use it to determine elapsed time
elapsedtime = omp_get_wtime() - starttime;
// Copy output vector from GPU buffer to host memory.
cudaStatus = cudaMemcpy(c, dev_c, size * sizeof(int), cudaMemcpyDeviceToHost);
if (cudaStatus != cudaSuccess) {
fprintf(stderr, "cudaMemcpy failed!");
goto Error;
}
Error:
cudaFree(dev_c);
cudaFree(dev_a);
cudaFree(dev_b);
return cudaStatus;
}