-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathpls_classifier.py
98 lines (77 loc) · 3 KB
/
pls_classifier.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
import numpy as np
import sklearn
import warnings
from sklearn.base import BaseEstimator
from sklearn.base import ClassifierMixin
from sklearn.cross_decomposition import PLSCanonical, PLSRegression
from sklearn.linear_model import LinearRegression
def _to_categorical(y, nb_classes=None):
'''Convert class vector (integers from 0 to nb_classes)
to binary class matrix, for use with categorical models
'''
if not nb_classes:
if 0 in y:
nb_classes = np.max(y) + 1
else:
nb_classes = np.max(y)
Y = np.zeros((len(y), nb_classes))
for i in range(len(y)):
Y[i, y[i]] = 1.
return Y
class PLSClassifier(BaseEstimator, ClassifierMixin):
__name__ = 'MultiLayeredPLS'
def __init__(self, estimator=None, n_iter=1500, eps=1e-6, n_comp=10, mode='regression'):
warnings.filterwarnings(action="ignore", module="scipy", message="^internal gelsd")
self.n_iter = n_iter
self.eps = eps
self.n_comp = n_comp
self.mode = mode
self.estimator = estimator
self.estimator_ = None
self.pls = None
def fit(self, X, y):
# if X is not np.array or y is not np.array:
# print('x and y must be of type np.array')
# raise ValueError
if X.shape[0] != y.shape[0]:
raise ValueError()
if self.estimator is None:
self.estimator_ = LinearRegression()
else:
self.estimator_ = sklearn.base.clone(self.estimator_)
self.classes_, target = np.unique(y, return_inverse=True)
target[target == 0] = -1
if self.mode == 'canonical':
self.pls = PLSCanonical(n_components=self.n_comp, scale=True, max_iter=self.n_iter, tol=self.eps)
elif self.mode == 'regression':
self.pls = PLSRegression(n_components=self.n_comp, scale=True, max_iter=self.n_iter, tol=self.eps)
proj_x, proj_y = self.pls.fit_transform(X, target)
self.estimator_.fit(proj_x, target)
return self
def predict_value(self, x):
resp = self.decision_function(x)
if resp.ndim == 1:
ans = np.zeros(resp.shape, dtype=np.int32)
ans[resp > 0] = self.classes_[1]
ans[resp <= 0] = self.classes_[0]
else:
ans = self.classes_[np.argmax(resp, axis=1)]
return ans
def predict_confidence(self, x):
resp = self.decision_function(x)
return resp[0]
def decision_function(self, x):
x = np.array(x).reshape((1, -1))
proj = self.pls.transform(x)
resp = self.estimator_.predict(proj)
return resp
def predict_proba(self, x):
resp = self.decision_function(x)
resp = np.min(-1, resp)
resp = np.max(1, resp)
resp -= 1
resp /= 2
# resp = np.exp(resp)
# for r in range(len(resp)):
# resp[r] /= np.sum(resp[r])
return resp