-
Notifications
You must be signed in to change notification settings - Fork 148
/
train.py
executable file
·526 lines (463 loc) · 25.1 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
#!/usr/bin/env python3
import argparse
import logging
from os.path import dirname, abspath, join, isfile
import numpy as np
import torch
from torch.utils.data import DataLoader
from tqdm import tqdm
import training.optim as optimz
from training.summary_utils import SummaryMaker
from training import train_utils
from training.datasets import ImageNetVID, ImageNetVID_val
from training.labels import create_BCELogit_loss_label
import training.models as mdl
import training.losses as losses
import training.metrics as met
from training.train_utils import RunningAverage
from utils.profiling import Timer
from utils.exceptions import IncompleteArgument
import utils.image_utils as imutils
device = torch.device("cuda") if torch.cuda.is_available() \
else torch.device("cpu")
def parse_arguments():
parser = argparse.ArgumentParser(description="Training script")
parser.add_argument('-m', '--mode', default='train', choices=['train', 'eval'],
help="The mode of execution of the script. Options are "
"'train' to train a model, and 'eval' to evaluate a model "
"on the ImageNet eval dataset.")
parser.add_argument('-d', '--data_dir', default='/home/ml2/workspace_rafael/dummy_Imagenet',
help="Full path to the directory containing the dataset")
parser.add_argument('-e', '--exp_name', default='default',
help="The name of the experiment folder that contains the "
"parameters, checkpoints and logs. Must be in "
"training/experiments")
parser.add_argument('-r', '--restore_file', default=None,
help="Optional, name of file to restore from (without its"
"extension .pth.tar)")
parser.add_argument("-t", "--timer", action="store_true", dest="timer",
default=False, help="Writes the elapsed time for some "
"sections of code on the log")
parser.add_argument("-j", "--num_workers", dest="num_workers", type=int,
default=4, help="The number of workers for the dataloaders"
" i.e. the number of additional"
" dedicated threads to dataloading.")
parser.add_argument('-f', '--imutils_flag', default='fast', type=str,
choices=imutils.VALID_FLAGS,
help="Optional, the flag of the image_utils defining "
"the image processing tools.")
parser.add_argument('-s', '--summary_samples', default=5, type=int,
help="Optional, the number of pairs the TensorboardX "
"samples during validation to write in the summary. "
"For each epoch it saves the ref and the search "
"embeddings as well as the final correlation map.")
args = parser.parse_args()
return args
def main(args):
root_dir = dirname(abspath(__file__))
# Load the parameters from json file
imagenet_dir = args.data_dir
exp_dir = join(root_dir, 'training', 'experiments', args.exp_name)
json_path = join(exp_dir, 'parameters.json')
assert isfile(json_path), ("No json configuration file found at {}"
.format(json_path))
params = train_utils.Params(json_path)
# Add the timer option to the parameters
params.update_with_dict({'timer': args.timer})
params.update_with_dict({'num_workers': args.num_workers})
train_utils.set_logger(join(exp_dir, '{}.log'.format(args.mode)))
logging.info("----Starting train script in mode: {}----".format(args.mode))
setup_timer = Timer(convert=True)
setup_timer.reset()
logging.info("Loading datasets...")
# Get the correct model
if params.model == 'BaselineEmbeddingNet':
model = mdl.SiameseNet(mdl.BaselineEmbeddingNet(), upscale=params.upscale,
corr_map_size=33, stride=4)
elif params.model == 'VGG11EmbeddingNet_5c':
model = mdl.SiameseNet(mdl.VGG11EmbeddingNet_5c(), upscale=params.upscale,
corr_map_size=33, stride=4)
elif params.model == 'VGG16EmbeddingNet_8c':
model = mdl.SiameseNet(mdl.VGG16EmbeddingNet_8c(), upscale=params.upscale,
corr_map_size=33, stride=4)
# Freeze all the indicated parameters
for i, (name, parameter) in enumerate(model.named_parameters()):
if i in params.parameter_freeze:
logging.info("Freezing parameter {}".format(name))
parameter.requires_grad = False
model = model.to(device)
# Set the tensorboard summary maker
summ_maker = SummaryMaker(join(exp_dir, 'tensorboard'),
params,
model.upscale_factor)
label_function = create_BCELogit_loss_label
img_read_fcn = imutils.get_decode_jpeg_fcn(flag=args.imutils_flag)
img_resize_fcn = imutils.get_resize_fcn(flag=args.imutils_flag)
logging.info("Validation dataset...")
metadata_val_file = join(exp_dir, "metadata.val")
val_set = ImageNetVID_val(imagenet_dir,
label_fcn=label_function,
pos_thr=params.pos_thr,
neg_thr=params.neg_thr,
upscale_factor=model.upscale_factor,
cxt_margin=params.context_margin,
reference_size=params.reference_sz,
search_size=params.search_sz,
img_read_fcn=img_read_fcn,
resize_fcn=img_resize_fcn,
metadata_file=metadata_val_file,
save_metadata=metadata_val_file,
max_frame_sep=params.max_frame_sep)
val_loader = DataLoader(val_set, batch_size=params.batch_size,
shuffle=False, num_workers=params.num_workers,
pin_memory=True)
if params.eval_epoch_size > len(val_loader):
logging.info('The user set eval_epoch_size ({}) is bigger than the '
'size of the eval set ({}). \n Setting '
'eval_epoch_size to the eval set size.'
.format(params.eval_epoch_size, len(val_loader)))
params.eval_epoch_size = len(val_loader)
# Define the model and optimizer
# fetch loss function and metrics
loss_fn = losses.BCELogit_Loss
metrics = met.METRICS
# Set the optional keyword arguments for the functions that need it
metrics['center_error']['kwargs']['upscale_factor'] = model.upscale_factor
try:
if args.mode == 'train':
logging.info("Training dataset...")
metadata_train_file = join(exp_dir, "metadata.train")
train_set = ImageNetVID(imagenet_dir,
label_fcn=label_function,
pos_thr=params.pos_thr,
neg_thr=params.neg_thr,
upscale_factor=model.upscale_factor,
cxt_margin=params.context_margin,
reference_size=params.reference_sz,
search_size=params.search_sz,
img_read_fcn=img_read_fcn,
resize_fcn=img_resize_fcn,
metadata_file=metadata_train_file,
save_metadata=metadata_train_file,
max_frame_sep=params.max_frame_sep)
train_loader = DataLoader(train_set, batch_size=params.batch_size,
shuffle=True, num_workers=params.num_workers,
pin_memory=True)
# Though I'm not a big fan of changing the value of a parameter
# variable after it has been read, at least I let the user know I'm
# changing it.
if params.train_epoch_size > len(train_loader):
logging.info('The user set train_epoch_size ({}) is bigger than the '
'size of the train set ({}). \n Setting '
'train_epoch_size to the train set size.'
.format(params.train_epoch_size, len(train_loader)))
params.train_epoch_size = len(train_loader)
logging.info("Done")
logging.info("Setup time: {}".format(setup_timer.elapsed))
parameters = filter(lambda p: p.requires_grad,model.parameters())
optimizer = optimz.OPTIMIZERS[params.optim](parameters, **params.optim_kwargs)
# Set the scheduler, that updates the learning rate using a exponential
# decay. If you don't want lr decay set it to 1.
logging.info("Using Exponential Learning Rate Decay of {}".format(params.lr_decay))
scheduler = torch.optim.lr_scheduler.ExponentialLR(optimizer, params.lr_decay)
logging.info("Epoch sizes: {} in train and {} in eval"
.format(params.train_epoch_size, params.eval_epoch_size))
logging.info("Starting training for {} epoch(s)".format(params.num_epochs))
with Timer(convert=True) as t:
train_and_evaluate(model, train_loader, val_loader, optimizer,
scheduler, loss_fn, metrics, params, exp_dir,
args, summ_maker=summ_maker)
if params.timer:
logging.info("[profiling] Total time to train {} epochs, with {}"
" elements on training dataset and {} "
"on val dataset: {}"
.format(params.num_epochs, len(train_loader),
len(val_loader), t.elapsed))
elif args.mode == 'eval':
logging.info("Done")
with Timer(convert=True) as total:
logging.info("Starting evaluation")
# TODO write a decent Exception
if args.restore_file is None:
raise IncompleteArgument("In eval mode you have to specify"
" a model checkpoint to be loaded"
" and evaluated."
" E.g: --restore_file best")
checkpoint_path = join(exp_dir, args.restore_file + '.pth.tar')
train_utils.load_checkpoint(checkpoint_path, model)
# Evaluate
summ_maker.epoch = 0
test_metrics = evaluate(model, loss_fn, val_loader, metrics,
params, args, summ_maker=summ_maker)
save_path = join(exp_dir,
"metrics_test_{}.json".format(args.restore_file))
train_utils.save_dict_to_json(test_metrics, save_path)
if params.timer:
logging.info("[profiling] Total evaluation time: {}"
.format(total.elapsed))
except KeyboardInterrupt:
logging.info("=== User interrupted execution ===")
raise
except Exception as e:
logging.exception("Fatal error in main loop")
logging.info("=== Execution Terminated with error ===")
else:
logging.info("=== Execution exited normally ===")
def train_and_evaluate(model, train_dataloader, val_dataloader, optimizer, scheduler,
loss_fn, metrics, params, exp_dir, args, summ_maker=None):
"""Train the model and evaluate every epoch.
Args:
model: (torch.nn.Module) the neural network
train_dataloader: (DataLoader) a torch.utils.data.DataLoader object
that fetches training data
val_dataloader: (DataLoader) a torch.utils.data.DataLoader object that
fetches validation data
optimizer: (torch.optim) optimizer for parameters of model
scheduler: (torch.optim.lr_scheduler.ExponentialLR) The exponential
learning rate scheduler.
loss_fn: a function that takes batch_output and batch_labels and
computes the loss for the batch
metrics: (dict) a dictionary of functions that compute a metric using
the output and labels of each batch
params: (Params) hyperparameters
exp_dir: (string) directory containing the parameters, weights and
logs for the current experiment. The full path.
args: The parser object containing the user informed arguments
summ_maker: The SummaryMaker object that writes the training information
to a tensorboard-readable file.
"""
# reload weights from restore_file if specified
# TODO load and set best validation error
if args.restore_file is not None:
restore_path = join(exp_dir, (args.restore_file + '.pth.tar'))
logging.info("Restoring parameters from {}".format(restore_path))
train_utils.load_checkpoint(restore_path, model)
# best_val_c_error = float("inf")
best_val_auc = 0
# Before starting the first epoch do the eval
logging.info('Pretraining evaluation...')
# Epoch 0 is the validation epoch before the learning starts.
summ_maker.epoch = 0
val_metrics = evaluate(model, loss_fn, val_dataloader, metrics, params, args,
summ_maker=summ_maker)
for epoch in range(params.num_epochs):
# The first epoch after training is 1 not 0
summ_maker.epoch = epoch + 1
# Run one epoch
logging.info("Epoch {}/{}".format(epoch + 1, params.num_epochs))
# compute number of batches in one epoch (one full pass over the training set)
train(model, optimizer, loss_fn, train_dataloader, metrics, params,
summ_maker=summ_maker)
# Update the Learning rate
scheduler.step()
# Evaluate for one epoch on validation set
val_metrics = evaluate(model, loss_fn, val_dataloader, metrics, params,
args, summ_maker=summ_maker)
val_auc = val_metrics['AUC']
is_best = val_auc >= best_val_auc
# Save weights
train_utils.save_checkpoint({'epoch': epoch + 1,
'state_dict': model.state_dict(),
'optim_dict': optimizer.state_dict()},
is_best=is_best,
checkpoint=exp_dir)
# If best_eval, best_save_path
if is_best:
logging.info("- Found new best auc")
best_val_auc = val_auc
# Save best val metrics in a json file in the model directory
best_json_path = join(exp_dir, "metrics_val_best_weights.json")
train_utils.save_dict_to_json(val_metrics, best_json_path)
pass
# Save latest val metrics in a json file in the model directory
last_json_path = join(exp_dir, "metrics_val_last_weights.json")
train_utils.save_dict_to_json(val_metrics, last_json_path)
def train(model, optimizer, loss_fn, dataloader, metrics, params,
summ_maker=None):
"""Train the model
Args:
model: (torch.nn.Module) the neural network
optimizer: (torch.optim) optimizer for parameters of model
loss_fn: a function that takes batch_output and batch_labels and
computes the loss for the batch
dataloader: (DataLoader) a torch.utils.data.DataLoader object that
fetches training data
metrics: (dict) a dictionary of functions that compute a metric using
the output and labels of each batch
params: (Params) hyperparameters
summ_maker: The SummaryMaker object that writes the training information
to a tensorboard-readable file.
"""
# set model to training mode
model.train()
# summary for current training loop and a running average object for loss
summ = {metric:RunningAverage() for metric in metrics}
loss_avg = RunningAverage()
profiled_values = ['load_data', 'batch']
profil_summ = {name: RunningAverage() for name in profiled_values}
timer = Timer()
# Use tqdm for progress bar
logging.info("Training on train set")
with tqdm(total=params.train_epoch_size) as progbar:
timer.reset()
for i, sample in enumerate(dataloader):
ref_img_batch = sample['ref_frame'].to(device)
search_batch = sample['srch_frame'].to(device)
labels_batch = sample['label'].to(device)
# move to GPU if available
profil_summ['load_data'].update(timer.elapsed)
timer.reset()
# compute model output and loss
output_batch = model(ref_img_batch, search_batch)
loss = loss_fn(output_batch, labels_batch)
# clear previous gradients, compute gradients of all variables wrt loss
optimizer.zero_grad()
loss.backward()
# performs updates using calculated gradients
optimizer.step()
# Evaluate summaries only once in a while
if i % params.save_summary_steps == 0:
# extract data from torch Variable, move to cpu, convert to numpy arrays
output_batch = output_batch.detach().cpu().numpy()
labels_batch = labels_batch.detach().cpu().numpy()
# compute all metrics on this batch
for (metric_name, metric_dict) in metrics.items():
metric_fcn = metric_dict['fcn']
kwargs = metric_dict['kwargs']
metric_value = metric_fcn(output_batch, labels_batch, **kwargs)
summ[metric_name].update(metric_value)
# update the average loss
loss_avg.update(loss.item())
profil_summ['batch'].update(timer.elapsed)
progbar.set_postfix(loss='{:05.3f}'.format(loss_avg()))
progbar.update()
timer.reset()
if i >= params.train_epoch_size - 1:
break
# compute mean of all metrics in summary
metrics_mean = {metric: values() for (metric, values) in summ.items()}
metrics_mean['loss'] = loss_avg()
if summ_maker:
for (m_name, m_value) in metrics_mean.items():
summ_maker.add_epochwise_scalar('train', m_name, m_value)
metrics_string = " ; ".join("{}: {:05.3f}".format(k, v) for k, v in metrics_mean.items())
logging.info("- Train metrics: " + metrics_string)
if params.timer:
logging.info("[profiling][train] Mean load_data time: {}".format(profil_summ['load_data']()))
logging.info("[profiling][train] Mean batch time: {}".format(profil_summ['batch']()))
@torch.no_grad()
def evaluate(model, loss_fn, dataloader, metrics, params, args, summ_maker=None):
"""Evaluate the model
Args:
model: (torch.nn.Module) the neural network
loss_fn: a function that takes batch_output and batch_labels and
computes the loss for the batch
dataloader: (DataLoader) a torch.utils.data.DataLoader object that
fetches data
metrics: (dict) a dictionary of functions that compute a metric using
the output and labels of each batch
params: (Params) hyperparameters
args: The parser object containing the user informed arguments
summ_maker: The SummaryMaker object that writes the training information
to a tensorboard-readable file.
"""
# set model to evaluation mode
model.eval()
# summary for current eval loop
summ = []
loss_avg = RunningAverage()
profiled_values = ['load_data', 'batch', 'metrics']
profil_summ = {name: RunningAverage() for name in profiled_values}
timer = Timer()
# compute metrics over the dataset
logging.info("Validation on val set")
with tqdm(total=params.eval_epoch_size) as progbar:
timer.reset()
# The TensorBoardX summary index, used to keep track of the number of
# summaries already written.
tbx_index = 0
for i, sample in enumerate(dataloader):
ref_img_batch = sample['ref_frame'].to(device)
search_batch = sample['srch_frame'].to(device)
labels_batch = sample['label'].to(device)
# move to GPU if available
profil_summ['load_data'].update(timer.elapsed)
timer.reset()
# compute model output
embed_ref = model.get_embedding(ref_img_batch)
embed_srch = model.get_embedding(search_batch)
output_batch = model.match_corr(embed_ref, embed_srch)
loss = loss_fn(output_batch, labels_batch)
# Make a TensorBoardX summary for the number of pairs informed by
# user in args.summary_samples. It takes the first n pairs, so it
# it is guaranteed to save the results for the same pairs in each
# execution, independently on the batch size.
if (tbx_index < args.summary_samples) and (summ_maker is not None):
# The batch_index selects an element of the batch. We get the
# batch size every time instead of using the user informed batch
# size to make sure no out of bounds exception raised for
# the last batch which might contain less elements.
batch_index = 0
batch_size = embed_ref.shape[0]
while (tbx_index < args.summary_samples) and (batch_index < batch_size):
# Since the val dataloader does not shuffle, we can use the
# tbx_index to get the information about the pairs in the
# list_pairs metadata.
seq, first_frame, second_frame = dataloader.dataset.list_pairs[tbx_index]
seq_name = dataloader.dataset.get_seq_name(seq)
index_string = "{}_{}_{}".format(tbx_index,
seq_name,
first_frame)
summ_maker.add_overlay("Ref_image_{}".format(index_string),
embed_ref[batch_index],
ref_img_batch[batch_index],
cmap='inferno')
summ_maker.add_overlay("Search_image_{}".format(index_string),
embed_srch[batch_index],
search_batch[batch_index],
cmap='inferno')
summ_maker.add_overlay("Correlation_map_{}-{}".format(index_string,
second_frame),
output_batch[batch_index],
search_batch[batch_index],
cmap='inferno',
add_ref=ref_img_batch[batch_index])
logging.info("Saving embeddings for summary {}".format(tbx_index))
tbx_index += 1
batch_index += 1
# extract data from torch Variable, move to cpu, convert to numpy arrays
output_batch = output_batch.cpu().numpy()
labels_batch = labels_batch.cpu().numpy()
profil_summ['batch'].update(timer.elapsed)
timer.reset()
# compute all metrics on this batch
summary_batch = {metric_name: metric_dict['fcn'](output_batch,
labels_batch,
**(metric_dict['kwargs']))
for metric_name, metric_dict in metrics.items()}
summary_batch['loss'] = loss.item()
loss_avg.update(loss.item())
summ.append(summary_batch)
profil_summ['metrics'].update(timer.elapsed)
progbar.set_postfix(loss='{:05.3f}'.format(loss_avg()))
progbar.update()
timer.reset()
if i >= params.eval_epoch_size - 1:
break
# compute mean of all metrics in summary
metrics_mean = {metric: np.mean([x[metric] for x in summ])
for metric in summ[0]}
if summ_maker:
for (m_name, m_value) in metrics_mean.items():
summ_maker.add_epochwise_scalar('val', m_name, m_value)
metrics_string = " ; ".join("{}: {:05.3f}".format(k, v)
for k, v in metrics_mean.items())
logging.info("- Eval metrics : " + metrics_string)
if params.timer:
logging.info("[profiling][eval] Mean load_data time: {}".format(profil_summ['load_data']()))
logging.info("[profiling][eval] Mean batch time: {}".format(profil_summ['batch']()))
logging.info("[profiling][eval] Mean metrics computation time: {}".format(profil_summ['metrics']()))
return metrics_mean
if __name__ == '__main__':
args = parse_arguments()
main(args)