-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathbasenet_train.py
553 lines (441 loc) · 20.7 KB
/
basenet_train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
import os
import torch
import torchvision
from torch.autograd import Variable
import torch.nn as nn
import torch.nn.functional as F
from torchvision import transforms as T
from torch.utils.data import Dataset, DataLoader
from torchvision import transforms, utils
import torch.optim as optim
import torchvision.transforms as standard_transforms
import numpy as np
import random
import glob
import os
import copy
from new_data_loader import Rescale
from new_data_loader import RescaleT
from new_data_loader import RandomCrop
from new_data_loader import ToTensor
from new_data_loader import ToTensorLab
from new_data_loader import SalObjDataset
from functools import wraps, partial
import smoothness
from model import U2NET
from model import U2NETP
import pdb
from pytorch_grad_cam import GradCAM, ScoreCAM, GradCAMPlusPlus, AblationCAM, XGradCAM, EigenCAM, FullGrad
from pytorch_grad_cam.utils.model_targets import ClassifierOutputTarget
from pytorch_grad_cam.utils.image import show_cam_on_image
# ------- util tool functions ----------
def exists(val):
return val is not None
def default(val, default):
return val if exists(val) else default
def singleton(cache_key):
def inner_fn(fn):
@wraps(fn)
def wrapper(self, *args, **kwargs):
instance = getattr(self, cache_key)
if instance is not None:
return instance
instance = fn(self, *args, **kwargs)
setattr(self, cache_key, instance)
return instance
return wrapper
return inner_fn
def get_module_device(module):
return next(module.parameters()).device
def set_requires_grad(model, val):
for p in model.parameters():
p.requires_grad = val
# augmentation utils
class RandomApply(nn.Module):
def __init__(self, fn, p):
super().__init__()
self.fn = fn
self.p = p
def forward(self, x):
if random.random() > self.p:
return x
return self.fn(x)
# exponential moving average
class EMA():
def __init__(self, beta):
super().__init__()
self.beta = beta
def update_average(self, old, new):
if old is None:
return new
return old * self.beta + (1 - self.beta) * new
def update_moving_average(ema_updater, ma_model, current_model):
for current_params, ma_params in zip(current_model.parameters(), ma_model.parameters()):
old_weight, up_weight = ma_params.data, current_params.data
ma_params.data = ema_updater.update_average(old_weight, up_weight)
class L2Norm(nn.Module):
def forward(self, x, eps = 1e-6):
norm = x.norm(dim = 1, keepdim = True).clamp(min = eps)
return x / norm
#normalize camp map
def norm_cam_map(input_cam,bag_map,pred_class):
B, C, H, W = input_cam.shape
bag_map = F.upsample(bag_map, size=[H,W], mode='bilinear')
cam_map = torch.zeros(B,1,H,W).cuda()
probs = pred_class.softmax(dim = -1)
for idx in range(B):
tmp_cam_vec = input_cam[idx,:,:,:].view( C, H * W).softmax(dim = -1)
tmp_cam_vec = tmp_cam_vec[torch.argmax(probs[idx,:]),:]
tmp_cam_vec = tmp_cam_vec - tmp_cam_vec.min()
tmp_cam_vec = tmp_cam_vec / (tmp_cam_vec.max())
tmp_vec = tmp_cam_vec
tmp_vec = tmp_vec.view(1, H, W)
cam_map[idx,:,:,:] = tmp_vec
cam_map = F.upsample(cam_map, size=[320,320], mode='bilinear')
return cam_map
# ------- 1. define loss function --------
bce_loss = nn.BCELoss(size_average=True)
def muti_bce_loss_fusion(d0, d1, d2, d3, d4, d5, d6, labels_v):
eps = 0.000000001
loss0 = bce_loss(d0,labels_v)
loss1 = bce_loss(d1,labels_v)
loss2 = bce_loss(d2,labels_v)
loss3 = bce_loss(d3,labels_v)
loss4 = bce_loss(d4,labels_v)
loss5 = bce_loss(d5,labels_v)
loss6 = bce_loss(d6,labels_v)
loss = loss0 + loss1 + loss2 + loss3 + loss4 + loss5 + loss6
print("l0: %3f, l1: %3f, l2: %3f, l3: %3f, l4: %3f, l5: %3f, l6: %3f\n"%(loss0.data.item(),loss1.data.item(),loss2.data.item(),loss3.data.item(),loss4.data.item(),loss5.data.item(),loss6.data.item()))
return loss0, loss
def gated_edge(pred,edge):
kernel = np.ones((11, 11)) / 121.0
kernel_tensor = torch.Tensor(np.expand_dims(np.expand_dims(kernel, 0), 0)) # size: (1, 1, 11,11)
if torch.cuda.is_available():
kernel_tensor = Variable(kernel_tensor.type(torch.FloatTensor).cuda(), requires_grad=False)
dilated_pred = torch.clamp(torch.nn.functional.conv2d(pred, kernel_tensor, padding=(5, 5)), 0, 1) # performing dilation
gated_edge_out = edge *dilated_pred
'''B, C, H, W = gated_edge_out.shape
gated_edge_out = gated_edge_out.view(B, C * H * W)
gated_edge_out = gated_edge_out / (gated_edge_out.max(dim=1)[0].view(B, 1))
gated_edge_out = gated_edge_out.view(B, C, H, W)'''
return gated_edge_out
def dino_loss_fn(
teacher_logits,
student_logits,
teacher_temp,
student_temp,
centers,
eps = 1e-20
):
teacher_logits = teacher_logits.detach()
student_probs = (student_logits / student_temp).softmax(dim = -1)
teacher_probs = ((teacher_logits-centers) / teacher_temp).softmax(dim = -1)
return - (teacher_probs * torch.log(student_probs + eps)).sum(dim = -1).mean()
def dino_loss_bag_fn(
teacher_logits,
student_logits,
teacher_temp,
student_temp,
centers,
eps = 1e-20
):
teacher_logits = teacher_logits.detach()
student_probs = student_logits
teacher_probs = ((teacher_logits-centers))
# creating positive and negative pairs
student_global = F.upsample(student_logits, size=[1,1], mode='bilinear')
B,C,H,W = student_logits.shape
student_probs = student_probs.view(B,C,H*W).transpose(1,2)
student_global = student_global.view(B,C,1)
student_global = student_global/student_global.norm(dim=1).view(B,1,1)
student_probs = student_probs/student_probs.norm(dim=-1).view(B,H*W,1)
sim_student = torch.bmm(student_probs,student_global)
pos_student_mask = Variable(torch.zeros(sim_student.shape).cuda(),requires_grad=False)
pos_student_mask[sim_student>0.95*sim_student.data.detach().max()] = 1
neg_student_mask = Variable(torch.zeros(sim_student.shape).cuda(),requires_grad=False)
neg_student_mask[sim_student<1.1*sim_student.data.detach().min()] = 1
neg_student_mask = torch.bmm(pos_student_mask,neg_student_mask.transpose(1,2))
teacher_global = F.upsample(teacher_probs, size=[1,1], mode='bilinear')
teacher_probs = teacher_probs.view(B,C,H*W).transpose(1,2)
teacher_global = teacher_global.view(B,C,1)
teacher_global = teacher_global/teacher_global.norm(dim=1).view(B,1,1)
teacher_probs = teacher_probs/teacher_probs.norm(dim=-1).view(B,H*W,1)
sim_teacher = torch.bmm(teacher_probs,teacher_global)
pos_teacher_mask = Variable(torch.zeros(sim_teacher.shape).cuda(),requires_grad=False)
pos_teacher_mask[sim_teacher>0.95*sim_teacher.data.detach().max()] = 1
pos_teacher_mask = torch.bmm(pos_student_mask,pos_teacher_mask.transpose(1,2))
neg_teacher_mask = Variable(torch.zeros(sim_teacher.shape).cuda(),requires_grad=False)
neg_teacher_mask[sim_teacher<1.1*sim_teacher.data.detach().min()] = 1
neg_teacher_mask = torch.bmm(pos_student_mask,neg_teacher_mask.transpose(1,2))
pos_student_mask = torch.bmm(pos_student_mask,pos_student_mask.transpose(1,2))
sim_student = torch.exp(torch.bmm(student_probs,student_probs.transpose(1,2))/student_temp)
sim_teacher = torch.exp(torch.bmm(student_probs,teacher_probs.transpose(1,2))/teacher_temp)
denom = (pos_student_mask+neg_student_mask)*sim_student + (pos_teacher_mask+neg_teacher_mask)*sim_teacher
denom = denom.sum(dim=-1).view(B,H*W,1) +0.000001
loss = pos_student_mask*sim_student/denom + (1-pos_student_mask)
loss = -1*pos_student_mask*torch.log(loss) -1*pos_teacher_mask*torch.log(pos_teacher_mask*sim_teacher/denom + (1-pos_teacher_mask))
return 0.003*loss.mean()
# ------- 2. set the directory of training dataset --------
model_name = 'u2net' #'u2netp'
data_dir = './data/training/DUTS/'#os.path.join(os.getcwd(), 'train_data' + os.sep)
tra_image_dir = 'img/'#os.path.join('DUTS', 'DUTS-TR', 'DUTS-TR', 'im_aug' + os.sep)
tra_label_dir = 'gt/'#os.path.join('DUTS', 'DUTS-TR', 'DUTS-TR', 'gt_aug' + os.sep)
tra_edge_dir = 'edge/'#os.path.join('DUTS', 'DUTS-TR', 'DUTS-TR', 'gt_aug' + os.sep)
image_ext = '.jpg'
label_ext = '.png'
model_dir = os.path.join(os.getcwd(), 'saved_models', 'fullysup_patch32_' + model_name + os.sep)
if (os.path.isdir(model_dir)==False):
os.mkdir(model_dir)
epoch_num = 100000
batch_size_train = 10
batch_size_val = 1
train_num = 0
val_num = 0
tra_img_name_list = list(glob.glob(data_dir + tra_image_dir + '*' + image_ext))
tra_lbl_name_list = []
tra_edge_name_list = []
for img_path in tra_img_name_list:
img_name = img_path.split(os.sep)[-1]
aaa = img_name.split(".")
bbb = aaa[0:-1]
imidx = bbb[0]
for i in range(1,len(bbb)):
imidx = imidx + "." + bbb[i]
tra_lbl_name_list.append(data_dir + tra_label_dir + imidx + label_ext)
tra_edge_name_list.append(data_dir + tra_edge_dir + imidx + label_ext)
print("---")
print("train images: ", len(tra_img_name_list))
print("train labels: ", len(tra_lbl_name_list))
print("train edges: ", len(tra_edge_name_list))
print("---")
train_num = len(tra_img_name_list)
salobj_dataset = SalObjDataset(
img_name_list=tra_img_name_list,
lbl_name_list=tra_lbl_name_list,
edge_name_list=tra_edge_name_list,
transform=transforms.Compose([
RescaleT(352),
RandomCrop(320),
ToTensorLab(flag=0)]))
salobj_dataloader = DataLoader(salobj_dataset, batch_size=batch_size_train, shuffle=True, num_workers=1)
# ------- 3. dino model and pseudo label generation --------
class Dino(nn.Module):
def __init__(
self,
net,
image_size,
patch_size = 16,
num_classes_K = 200,
student_temp = 0.9,
teacher_temp = 0.04,
local_upper_crop_scale = 0.4,
global_lower_crop_scale = 0.5,
moving_average_decay = 0.9,
center_moving_average_decay = 0.9,
augment_fn = None,
augment_fn2 = None
):
super().__init__()
self.net = net
# default BYOL augmentation
DEFAULT_AUG = torch.nn.Sequential(
RandomApply(
T.ColorJitter(0.8, 0.8, 0.8, 0.2),
p = 0.3
),
T.RandomGrayscale(p=0.2),
T.RandomHorizontalFlip(),
RandomApply(
T.GaussianBlur((3, 3), (1.0, 2.0)),
p = 0.2
),
)
self.augment1 = default(augment_fn, DEFAULT_AUG)
self.augment2 = default(augment_fn2, DEFAULT_AUG)
DEFAULT_AUG_BAG = torch.nn.Sequential(
RandomApply(
T.ColorJitter(0.8, 0.8, 0.8, 0.2),
p=0.3
),
T.RandomGrayscale(p=0.2),
T.RandomHorizontalFlip(),
RandomApply(
T.GaussianBlur((3, 3), (1.0, 2.0)),
p=0.2
),
)
self.augment_bag = default(None, DEFAULT_AUG_BAG)
# local and global crops
self.local_crop = T.RandomResizedCrop((image_size[0], image_size[0]), scale = (0.05, local_upper_crop_scale))
self.local_crop_bag = T.RandomResizedCrop((image_size[0], image_size[0]), scale = (0.3, 0.6))
self.global_crop = T.RandomResizedCrop((image_size[0], image_size[0]), scale = (global_lower_crop_scale, 1.))
self.student_encoder = U2NET(3, 1,image_size,patch_size) if (self.net=='u2net') else U2NETP(3, 1)
self.teacher_encoder = U2NET(3, 1,image_size,patch_size) if (self.net=='u2net') else U2NETP(3, 1)
if torch.cuda.is_available():
self.student_encoder = torch.nn.DataParallel(self.student_encoder)
self.teacher_encoder = torch.nn.DataParallel(self.teacher_encoder)
self.teacher_ema_updater = EMA(moving_average_decay)
self.register_buffer('teacher_centers', torch.zeros(1, num_classes_K))
self.register_buffer('last_teacher_centers', torch.zeros(1, num_classes_K))
self.register_buffer('teacher_centers_bag', torch.zeros(1,num_classes_K,image_size[0]//patch_size,image_size[0]//patch_size))
self.register_buffer('last_teacher_centers_bag', torch.zeros(1, num_classes_K,image_size[0]//patch_size,image_size[0]//patch_size))
#print(self.teacher_centers_bag.shape)
self.teacher_centering_ema_updater = EMA(center_moving_average_decay)
self.student_temp = student_temp
self.teacher_temp = teacher_temp
# get device of network and make wrapper same device
#device = get_module_device(net)
if torch.cuda.is_available():
self.cuda()
# send a mock image tensor to instantiate singleton parameters
self.forward(torch.randn(2, 3, 320,320).cuda())
@singleton('teacher_encoder')
def _get_teacher_encoder(self):
teacher_encoder = copy.deepcopy(self.student_encoder)
set_requires_grad(teacher_encoder, False)
return teacher_encoder
def reset_moving_average(self):
del self.teacher_encoder
self.teacher_encoder = None
def update_moving_average(self):
assert self.teacher_encoder is not None, 'target encoder has not been created yet'
update_moving_average(self.teacher_ema_updater, self.teacher_encoder, self.student_encoder)
new_teacher_centers = self.teacher_centering_ema_updater.update_average(self.teacher_centers, self.last_teacher_centers)
self.teacher_centers.copy_(new_teacher_centers)
#pdb.set_trace()
new_teacher_centers_bag = self.teacher_centering_ema_updater.update_average(self.teacher_centers_bag,self.last_teacher_centers_bag)
self.teacher_centers_bag.copy_(new_teacher_centers_bag)
def forward(
self,
x,
return_embedding = False,
return_projection = True,
student_temp = None,
teacher_temp = None
):
if return_embedding:
return self.student_encoder(x, return_projection = return_projection)
image_one, image_two = self.augment1(x), self.augment2(x)
local_image_one, local_image_two = self.local_crop(image_one), self.local_crop(image_two)
global_image_one, global_image_two = self.global_crop(image_one), self.global_crop(image_two)
student_proj_one = self.student_encoder(local_image_one)[-1]
student_proj_two = self.student_encoder(local_image_two)[-1]
with torch.no_grad():
teacher_encoder = self._get_teacher_encoder()
teacher_proj_one = teacher_encoder(global_image_one)[-1]
teacher_proj_two = teacher_encoder(global_image_two)[-1]
#print(teacher_proj_one.shape)
loss_fn_ = partial(
dino_loss_fn,
student_temp = default(student_temp, self.student_temp),
teacher_temp = default(teacher_temp, self.teacher_temp),
centers = self.teacher_centers
)
teacher_logits_avg = torch.cat((teacher_proj_one, teacher_proj_two)).mean(dim = 0)
self.last_teacher_centers.copy_(teacher_logits_avg)
loss = (loss_fn_(teacher_proj_one, student_proj_two) + loss_fn_(teacher_proj_two, student_proj_one)) / 2
return loss
def bag_loss(self, x, return_embedding = False,return_projection = True,student_temp = None,teacher_temp = None):
if return_embedding:
return self.student_encoder(x, return_projection=return_projection)
image_one, image_two = self.augment_bag(x), self.augment_bag(x)
local_image_one, local_image_two = self.local_crop_bag(image_one), self.local_crop_bag(image_two)
global_image_one, global_image_two = self.global_crop(image_one), self.global_crop(image_two)
student_proj_one = self.student_encoder(local_image_one)[-2]
student_proj_two = self.student_encoder(local_image_two)[-2]
with torch.no_grad():
teacher_encoder = self._get_teacher_encoder()
teacher_proj_one = teacher_encoder(global_image_one)
teacher_proj_two = teacher_encoder(global_image_two)
#pdb.set_trace()
teacher_logits_avg = torch.cat((teacher_proj_one[-2], teacher_proj_two[-2])).mean(dim=0)
self.last_teacher_centers_bag.copy_(teacher_logits_avg)
student_proj_two_glb = student_proj_two.mean(dim=-1).mean(dim=-1)
student_proj_one_glb = student_proj_one.mean(dim=-1).mean(dim=-1)
loss_fn_bag = partial(
dino_loss_bag_fn,
student_temp=default(student_temp, self.student_temp),
teacher_temp=default(teacher_temp, self.teacher_temp),
centers=self.teacher_centers_bag
)
loss_fn_ = partial(
dino_loss_fn,
student_temp=default(student_temp, self.student_temp),
teacher_temp=default(teacher_temp, self.teacher_temp),
centers=self.teacher_centers
)
loss = (loss_fn_bag(teacher_proj_one[-2], student_proj_two) + loss_fn_bag(teacher_proj_two[-2],
student_proj_one)) / 4
loss += (loss_fn_(teacher_proj_one[-1], student_proj_two_glb) + loss_fn_(teacher_proj_two[-1],
student_proj_one_glb)) / 4
return loss
# ------- 4. define model --------
# define the net
'''if(model_name=='u2net'):
net = U2NET(3, 1)
elif(model_name=='u2netp'):
net = U2NETP(3,1)'''
dino = Dino(model_name,[320],32)
if torch.cuda.is_available():
dino.cuda()
#dino = torch.nn.DataParallel(dino)
# ------- 5. define optimizer --------
print("---define optimizer...")
optimizer = optim.Adam(dino.parameters(), lr=0.0006, betas=(0.9, 0.999), eps=1e-08, weight_decay=0)
dino_optimizer = optim.Adam(dino.parameters(), lr=0.0003, betas=(0.9, 0.999), eps=1e-08, weight_decay=0)
# ------- 6. training process --------
print("---start training...")
ite_num = 0
running_loss = 0.0
running_tar_loss = 0.0
ite_num4val = 0
save_frq = 10000 # save the model every 10000 iterations
sm_loss_weight = 0.3
smooth_loss = smoothness.smoothness_loss(size_average=True)
for epoch in range(0,epoch_num):
#net.train()
dino.train()
for i, data in enumerate(salobj_dataloader):
ite_num = ite_num + 1
ite_num4val = ite_num4val + 1
inputs, labels, edges = data['image'], data['label'], data['edge']
inputs = inputs.type(torch.FloatTensor)
labels = labels.type(torch.FloatTensor)
edges = edges.type(torch.FloatTensor)
# wrap them in Variable
if torch.cuda.is_available():
inputs_v, labels_v, edges_v = Variable(inputs.cuda(), requires_grad=False), Variable(labels.cuda(),requires_grad=False), Variable(edges.cuda(),requires_grad=False)
else:
inputs_v, labels_v, edges_v = Variable(inputs, requires_grad=False), Variable(labels, requires_grad=False), Variable(edges, requires_grad=False)
# y zero the parameter gradients
optimizer.zero_grad()
# forward + backward + optimize
loss = 0
loss2 = 0
pseudo_label_gts = 0
d0, d1, d2, d3, d4, d5, d6, pred_edges, cam_map, bag_map, pred_class = dino.student_encoder(inputs_v)
loss2, loss = muti_bce_loss_fusion(d0, d1, d2, d3, d4, d5, d6 , labels_v)
smoothLoss_cur1 = sm_loss_weight * smooth_loss(d0, T.Grayscale()(inputs_v))
edge_loss = bce_loss(gated_edge(labels_v,pred_edges), gated_edge(labels_v,edges_v))
loss += edge_loss + smoothLoss_cur1
if loss == loss:
loss.backward()
optimizer.step()
# # print statistics
if loss == loss:
running_loss += loss.data.item()
if loss2 >0:
running_tar_loss += loss2.data.item()
# del temporary outputs and loss
del d0, d1, d2, d3, d4, d5, d6, loss2, loss, cam_map, pred_edges, edge_loss, pseudo_label_gts, pred_class, dino_loss, dino_bag_loss
print("[epoch: %3d/%3d, batch: %5d/%5d, ite: %d] train loss: %3f, tar: %3f " % (
epoch + 1, epoch_num, (i + 1) * batch_size_train, train_num, ite_num, running_loss / ite_num4val, running_tar_loss / ite_num4val))
if ite_num % save_frq == 0:
torch.save(dino.student_encoder.state_dict(), model_dir + model_name+"_bce_itr_%d_train_%3f_tar_%3f.pth" % (ite_num, running_loss / ite_num4val, running_tar_loss / ite_num4val))
running_loss = 0.0
running_tar_loss = 0.0
dino.train() # resume train
ite_num4val = 0
if (epoch+1) % 10 ==0:
torch.save(dino.student_encoder.state_dict(), model_dir + model_name+"_bce_epoch_%d_train.pth" % (epoch))
torch.save(dino.state_dict(), model_dir + model_name+"_bce_epoch_%d_train_fulldino.pth" % (epoch))